These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8020579)

  • 21. Striking differences between the mouse and the human alpha-fetoprotein enhancers.
    Long L; Davidson JN; Spear BT
    Genomics; 2004 Apr; 83(4):694-705. PubMed ID: 15028291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological significance of minisatellites.
    Singh L
    Electrophoresis; 1995 Sep; 16(9):1586-95. PubMed ID: 8582339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Affinity of a DNA with highly repetitive sequence for nuclear proteins from rat liver.
    Asano S; Hibino Y; Ikeda Y; Iwakami N; Sugano N
    Biochem Int; 1989 Oct; 19(4):871-80. PubMed ID: 2619755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two hypervariable minisatellite DNA binding proteins.
    Wahls WP; Swenson G; Moore PD
    Nucleic Acids Res; 1991 Jun; 19(12):3269-74. PubMed ID: 2062643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel nuclear protein binds centromeric alpha satellite DNA.
    Gaff C; du Sart D; Kalitsis P; Iannello R; Nagy A; Choo KH
    Hum Mol Genet; 1994 May; 3(5):711-6. PubMed ID: 8081356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide sequence and genomic organization of cichlid fish minisatellites.
    Harris AS; Wright JM
    Genome; 1995 Feb; 38(1):177-84. PubMed ID: 7729681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.
    Collick A; Dunn MG; Jeffreys AJ
    Nucleic Acids Res; 1991 Dec; 19(23):6399-404. PubMed ID: 1754375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A GGCAGG motif in minisatellites affecting their germline instability.
    Mitani K; Takahashi Y; Kominami R
    J Biol Chem; 1990 Sep; 265(25):15203-10. PubMed ID: 2394717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms.
    Rogstad SH; Patton JC; Schaal BA
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):9176-8. PubMed ID: 3194419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LRP130, a protein containing nine pentatricopeptide repeat motifs, interacts with a single-stranded cytosine-rich sequence of mouse hypervariable minisatellite Pc-1.
    Tsuchiya N; Fukuda H; Sugimura T; Nagao M; Nakagama H
    Eur J Biochem; 2002 Jun; 269(12):2927-33. PubMed ID: 12071956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gel retardation assay.
    Scott V; Clark AR; Docherty K
    Methods Mol Biol; 1994; 31():339-47. PubMed ID: 7921030
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.
    Tourmente S; Deragon JM; Lafleuriel J; Tutois S; Pélissier T; Cuvillier C; Espagnol MC; Picard G
    Nucleic Acids Res; 1994 Aug; 22(16):3317-21. PubMed ID: 8078766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Preparation of human minisatellite DNA probes].
    Guo GM; Qiu XF; Hong XK; Xu HG; Qin SZ; Jiang ZS; Xue JL
    Yi Chuan Xue Bao; 1990; 17(3):226-9. PubMed ID: 2252600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-stranded DNA binding proteins isolated from mouse brain recognize specific trinucleotide repeat sequences in vitro.
    Yano-Yanagisawa H; Li Y; Wang H; Kohwi Y
    Nucleic Acids Res; 1995 Jul; 23(14):2654-60. PubMed ID: 7651826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular characterization of a new human minisatellite that is able to form single-stranded loops in vitro and is recognized by nuclear proteins.
    Boán F; González AI; Rodríguez JM; Gómez-Márquez J
    FEBS Lett; 1997 Dec; 418(3):251-7. PubMed ID: 9428723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs.
    Gaubatz JW; Flores SC
    Mutat Res; 1990 Jan; 237(1):29-36. PubMed ID: 2320037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-affinity microtubule protein-higher organism DNA complexes. Many-fold enrichment in repetitive mouse DNA sequences comprised of satellite DNAs.
    Marx KA; Denial T; Keller T
    Biochim Biophys Acta; 1984 Dec; 783(3):283-92. PubMed ID: 6391551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous characterization of DNA-binding proteins and their specific genomic DNA target sites.
    Lelong JC
    Methods Enzymol; 1993; 218():609-18. PubMed ID: 8389970
    [No Abstract]   [Full Text] [Related]  

  • 39. Percent satellite DNA as a function of tissue and age of mice.
    Prashad N; Cutler RG
    Biochim Biophys Acta; 1976 Jan; 418(1):1-23. PubMed ID: 1244847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and characterization of nuclear scaffold proteins which bind to a highly repetitive bent DNA from rat liver.
    Hibino Y; Nakamura K; Tsukada S; Sugano N
    Biochim Biophys Acta; 1993 Aug; 1174(2):162-70. PubMed ID: 8357833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.