These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 8020749)

  • 41. Formylmethanofuran synthesis by formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum Marburg.
    Wasserfallen A
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1256-61. PubMed ID: 8147868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH.
    Vermeij P; Pennings JL; Maassen SM; Keltjens JT; Vogels GD
    J Bacteriol; 1997 Nov; 179(21):6640-8. PubMed ID: 9352911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox-dependent inactivation of the NAD-dependent hydrogenase from Alcaligenes eutrophus Z1.
    Petrov RR; Utkin IB; Popov VO
    Arch Biochem Biophys; 1989 Jan; 268(1):298-305. PubMed ID: 2643386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mn++-specific reactivation of EDTA inactivated alpha-isopropylmalate synthase from Alcaligenes eutrophus H 16.
    Wiegel J
    Biochem Biophys Res Commun; 1978 Jun; 82(3):907-12. PubMed ID: 29612
    [No Abstract]   [Full Text] [Related]  

  • 45. Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg).
    Vermeij P; Vinke E; Keltjens JT; Van der Drift C
    Eur J Biochem; 1995 Dec; 234(2):592-7. PubMed ID: 8536708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Dissociative model of the thermoinactivation of NAD-dependent hydrogenase].
    Popov VO; Ovchinnikov AN; Gazarian IG; Egorov AM; Berezin IV
    Dokl Akad Nauk SSSR; 1985; 281(3):735-7. PubMed ID: 3893960
    [No Abstract]   [Full Text] [Related]  

  • 47. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.
    Eismann K; Mlejnek K; Zipprich D; Hoppert M; Gerberding H; Mayer F
    J Bacteriol; 1995 Nov; 177(21):6309-12. PubMed ID: 7592402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solubilization and properties of a particulate hydrogenase from Methanobacterium strain G2R.
    McKellar RC; Sprott GD
    J Bacteriol; 1979 Jul; 139(1):231-8. PubMed ID: 37236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2.
    Afting C; Hochheimer A; Thauer RK
    Arch Microbiol; 1998 Mar; 169(3):206-10. PubMed ID: 9477254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogenase genes.
    Tait RC; Andersen K; Cangelosi G; Shanmugam KT
    Basic Life Sci; 1981; 18():279-303. PubMed ID: 7023460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solution structure of the RNA polymerase subunit RPB5 from Methanobacterium thermoautotrophicum.
    Yee A; Booth V; Dharamsi A; Engel A; Edwards AM; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6311-5. PubMed ID: 10841538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis.
    Perona-Vico E; Blasco-Gómez R; Colprim J; Puig S; Bañeras L
    PLoS One; 2019; 14(4):e0215029. PubMed ID: 30973887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Product isotope effects on in vivo methanogenesis by Methanobacterium thermoautotrophicum.
    Spencer RW; Daniels L; Fulton G; Orme-Johnson WH
    Biochemistry; 1980 Aug; 19(16):3678-83. PubMed ID: 6996709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maleylacetate reductases in chloroaromatic-degrading bacteria using the modified ortho pathway: comparison of catalytic properties.
    Müller D; Schlömann M; Reineke W
    J Bacteriol; 1996 Jan; 178(1):298-300. PubMed ID: 8550433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134.
    Vollmer MD; Stadler-Fritzsche K; Schlömann M
    Arch Microbiol; 1993; 159(2):182-8. PubMed ID: 8439238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Medium-reductant directed expression of methyl coenzyme M reductase isoenzymes in Methanobacterium thermoautotrophicum (strain deltaH).
    Pennings JL; de Wijs JL; Keltjens JT; van der Drift C
    FEBS Lett; 1997 Jun; 410(2-3):235-7. PubMed ID: 9237636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and characterization of Methanobacterium thermoautotrophicum DeltaH mutants unable to grow under hydrogen-deprived conditions.
    Pennings JL; Keltjens JT; Vogels GD
    J Bacteriol; 1998 May; 180(10):2676-81. PubMed ID: 9573152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anaerobic biochemical techniques applied in the purification of the hydrogenase of Methanobacterium thermoautotrophicum.
    Doddema HJ
    Antonie Van Leeuwenhoek; 1980; 46(1):107. PubMed ID: 6994644
    [No Abstract]   [Full Text] [Related]  

  • 59. Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674.
    Bhatia RK; Bhatia SK; Mehta PK; Bhalla TC
    J Ind Microbiol Biotechnol; 2013 Jan; 40(1):21-7. PubMed ID: 23065258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solubilization and activity of yeast cells in water-in-oil microemulsion.
    Pfammatter N; Guadalupe AA; Luisi PL
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1244-51. PubMed ID: 2662975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.