BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8020886)

  • 21. Cyclic AMP stimulates Ca2+ entry in rat hepatocytes by interacting with the plasma membrane carriers involved in receptor-mediated Ca2+ influx.
    Kass GE; Gahm A; Llopis J
    Cell Signal; 1994 Jul; 6(5):493-501. PubMed ID: 7818985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that stimulation of plasma-membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes.
    Bygrave FL; Gamberucci A; Fulceri R; Benedetti A
    Biochem J; 1993 May; 292 ( Pt 1)(Pt 1):19-22. PubMed ID: 8389124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of dibutyryl cyclic AMP on the excretion of taurocholic acid from isolated rat liver cells.
    Botham KM; Suckling KE
    Biochim Biophys Acta; 1986 Dec; 889(3):382-5. PubMed ID: 3024728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes.
    Mukhopadhayay S; Ananthanarayanan M; Stieger B; Meier PJ; Suchy FJ; Anwer MS
    Am J Physiol; 1997 Oct; 273(4):G842-8. PubMed ID: 9357825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication via gap junctions modulates bile secretion in the isolated perfused rat liver.
    Nathanson MH; Rios-Velez L; Burgstahler AD; Mennone A
    Gastroenterology; 1999 May; 116(5):1176-83. PubMed ID: 10220510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of a nonmitochondrial Ca2+ pool in the synergistic stimulation by cyclic AMP and vasopressin of Ca2+ uptake in isolated rat hepatocytes.
    Bànhegyi G; Fulceri R; Bellomo G; Romani A; Pompella A; Benedetti A
    Arch Biochem Biophys; 1991 Jun; 287(2):320-8. PubMed ID: 1654813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vasopressin-induced disruption of actin cytoskeletal organization and canalicular function in isolated rat hepatocyte couplets: possible involvement of protein kinase C.
    Roma MG; Stone V; Shaw R; Coleman R
    Hepatology; 1998 Oct; 28(4):1031-41. PubMed ID: 9755240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of glucagon actions by phorbol myristate acetate in isolated hepatocytes. Effect of hypothyroidism.
    García-Sáinz JA; Macías-Silva M; Hernández-Sotomayor SM; Torres-Márquez ME; Trivedi D; Hruby VJ
    Cell Signal; 1990; 2(3):235-43. PubMed ID: 2169291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucagon, vasopressin and angiotensin all elicit a rapid, transient increase in hepatocyte protein kinase C activity.
    Tang EK; Houslay MD
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):341-6. PubMed ID: 1575678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of membrane protein kinase C by glucagon and Ca(2+)-mobilizing hormones in cultured rat hepatocytes. Role of phosphatidylinositol and phosphatidylcholine hydrolysis.
    Pittner RA; Fain JN
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):371-8. PubMed ID: 1859365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vasopressin and angiotensin control the activity of liver phosphodiesterase.
    Keppens S; De Wulf H
    Biochem J; 1984 Aug; 222(1):277-80. PubMed ID: 6089761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of E-series prostaglandins on cyclic AMP-dependent and -independent hormone-stimulated glycogenolysis in hepatocytes.
    Brass EP; Garrity MJ
    Diabetes; 1985 Mar; 34(3):291-4. PubMed ID: 2982682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vasopressin and norepinephrine stimulation of inositol phosphate accumulation in rat hepatocytes are modified differently by protein f1nase C and protein kinase A.
    Pittner RA; Fain JN
    Biochim Biophys Acta; 1990 Apr; 1043(2):211-7. PubMed ID: 2107881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of taurocholate release from isolated rat hepatocytes in suspension by alpha-adrenergic agents and vasopressin: implications for control of bile salt secretion.
    Gewirtz DA; Randolph JK; Goldman ID
    Hepatology; 1984; 4(2):205-12. PubMed ID: 6142855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of glucagon and alpha- and beta-agonists on glycogenolysis and gluconeogenesis in isolated ovine hepatocytes.
    Faulkner A; Pollock HT
    Biochim Biophys Acta; 1990 Apr; 1052(1):229-34. PubMed ID: 2157499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bidirectional concentration-dependent effects of glucagon and dibutyryl cyclic AMP on DNA synthesis in cultured adult rat hepatocytes.
    Brønstad GO; Sand TE; Christoffersen T
    Biochim Biophys Acta; 1983 Aug; 763(1):58-63. PubMed ID: 6307392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycogenolytic response to glucagon of cultured fetal hepatocytes. Refractoriness following prior exposure to glucagon.
    Plas C; Nunez J
    J Biol Chem; 1975 Jul; 250(14):5304-11. PubMed ID: 167009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of taurocholate and ursodeoxycholate uptake in hamster hepatocytes by Ca(2+)-mobilizing agents.
    Bouscarel B; Reza S; Dougherty LA; Fromm H; Nussbaum R
    Am J Physiol; 1996 Dec; 271(6 Pt 1):G1084-95. PubMed ID: 8997253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hormonal responsiveness of hepatocytes after hypothermic preservation in University of Wisconsin solution.
    García-Sáinz JA; Casas-González P
    Cell Signal; 1997; 9(3-4):277-81. PubMed ID: 9218128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiotensin II inhibits hepatic cAMP accumulation induced by glucagon and epinephrine and their metabolic effects.
    Morgan NG; Exton JH; Blackmore PF
    FEBS Lett; 1983 Mar; 153(1):77-80. PubMed ID: 6298010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.