BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 8020964)

  • 1. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.
    Zietkiewicz E; Rafalski A; Labuda D
    Genomics; 1994 Mar; 20(2):176-83. PubMed ID: 8020964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of inter simple sequence repeat (ISSR) markers to plant genetics.
    Godwin ID; Aitken EA; Smith LW
    Electrophoresis; 1997 Aug; 18(9):1524-8. PubMed ID: 9378115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular differentiation of three species of Metagonimus by simple sequence repeat anchored polymerase chain reaction (SSR-PCR) amplification.
    Yang HJ; Guk SM; Han ET; Chai JY
    J Parasitol; 2000 Oct; 86(5):1170-2. PubMed ID: 11128506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Sequencing on products of Oncomelania hupensis through simple sequence repeat anchored polymerase chain reaction amplification].
    Guo JT; Zhou YB; Wei JG; Zhao GM
    Zhonghua Liu Xing Bing Xue Za Zhi; 2008 Nov; 29(11):1119-22. PubMed ID: 19173938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis.
    Bell CJ; Ecker JR
    Genomics; 1994 Jan; 19(1):137-44. PubMed ID: 8188214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAPD identification of microsatellites in Daphnia.
    Ender A; Schwenk K; Städler T; Streit B; Schierwater B
    Mol Ecol; 1996 Jun; 5(3):437-41. PubMed ID: 8688961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FISSR-PCR: a simple and sensitive assay for highthroughput genotyping and genetic mapping.
    Nagaraju J; Kathirvel M; Subbaiah EV; Muthulakshmi M; Kumar LD
    Mol Cell Probes; 2002 Feb; 16(1):67-72. PubMed ID: 12005450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse random amplified microsatellite polymorphism reveals enhanced polymorphisms in the 3' end of simple sequence repeats in the pepper genome.
    Min WK; Han JH; Kang WH; Lee HR; Kim BD
    Mol Cells; 2008 Sep; 26(3):250-7. PubMed ID: 18483466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length polymorphism of a microsatellite in human and non human primates.
    Calvas P; Blancher A; Salvignol I; Socha WW; Ruffié J
    C R Acad Sci III; 1994 Aug; 317(8):755-63. PubMed ID: 7882159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dinucleotide repeat polymorphisms isolated by the polymerase chain reaction.
    Grist SA; Firgaira FA; Morley AA
    Biotechniques; 1993 Aug; 15(2):304-9. PubMed ID: 8373600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of genetic alterations in esophageal squamous cell carcinomas and adjacent normal epithelia by comparative DNA fingerprinting using inter-simple sequence repeat PCR.
    Tang JC; Lam KY; Law S; Wong J; Srivastava G
    Clin Cancer Res; 2001 Jun; 7(6):1539-45. PubMed ID: 11410488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower.
    Tang S; Kishore VK; Knapp SJ
    Theor Appl Genet; 2003 Jun; 107(1):6-19. PubMed ID: 12835928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting.
    Rassmann K; Schlötterer C; Tautz D
    Electrophoresis; 1991; 12(2-3):113-8. PubMed ID: 2040259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency and polymorphism of simple sequence repeats in a contiguous 685-kb DNA sequence containing the human T-cell receptor beta-chain gene complex.
    Charmley P; Concannon P; Hood L; Rowen L
    Genomics; 1995 Oct; 29(3):760-5. PubMed ID: 8575771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting.
    Kalendar R; Schulman AH
    Nat Protoc; 2006; 1(5):2478-84. PubMed ID: 17406494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of inter-simple sequence repeat PCR to mouse models: assessment of genetic alterations in carcinogenesis.
    Benavides F; Zamisch M; Flores M; Campbell MR; Andrew SE; Angel JM; Licchesi J; Sternik G; Richie ER; Conti CJ
    Genes Chromosomes Cancer; 2002 Dec; 35(4):299-310. PubMed ID: 12378524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice.
    Kang HW; Park DS; Go SJ; Eun MY
    Mol Cells; 2002 Apr; 13(2):281-7. PubMed ID: 12018851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction.
    Versalovic J; Kapur V; Koeuth T; Mazurek GH; Whittam TS; Musser JM; Lupski JR
    Arch Pathol Lab Med; 1995 Jan; 119(1):23-9. PubMed ID: 7802548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Non-radioactive detection of dinucleotide repeat polymorphisms and its application to genetic diagnosis].
    Huang X; Hu X; Zong H; Gao Y
    Yi Chuan Xue Bao; 1995; 22(2):81-5. PubMed ID: 8852021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in asteraceae and closely allied families.
    Linder CR; Goertzen LR; Heuvel BV; Francisco-Ortega J; Jansen RK
    Mol Phylogenet Evol; 2000 Feb; 14(2):285-303. PubMed ID: 10679161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.