These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 8021245)
1. A germ line-specific sequence element in an intron in Tetrahymena thermophila. Heinonen TY; Pearlman RE J Biol Chem; 1994 Jul; 269(26):17428-33. PubMed ID: 8021245 [TBL] [Abstract][Full Text] [Related]
2. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila. Fillingham JS; Pearlman RE Eukaryot Cell; 2004 Apr; 3(2):288-301. PubMed ID: 15075259 [TBL] [Abstract][Full Text] [Related]
3. Cis-acting requirements in flanking DNA for the programmed elimination of mse2.9: a common mechanism for deletion of internal eliminated sequences from the developing macronucleus of Tetrahymena thermophila. Fillingham JS; Bruno D; Pearlman RE Nucleic Acids Res; 2001 Jan; 29(2):488-98. PubMed ID: 11139619 [TBL] [Abstract][Full Text] [Related]
4. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. Kirk KE; Blackburn EH Genes Dev; 1995 Jan; 9(1):59-71. PubMed ID: 7828852 [TBL] [Abstract][Full Text] [Related]
5. A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. Wuitschick JD; Gershan JA; Lochowicz AJ; Li S; Karrer KM Nucleic Acids Res; 2002 Jun; 30(11):2524-37. PubMed ID: 12034842 [TBL] [Abstract][Full Text] [Related]
6. The tRNATyr-isoacceptors and their genes in the ciliate Tetrahymena thermophila: cytoplasmic tRNATyr has a QPsiA anticodon and is coded by multiple intron-containing genes. Junker V; Teichmann T; Hekele A; Fingerhut C; Beier H Nucleic Acids Res; 1997 Nov; 25(21):4194-200. PubMed ID: 9336446 [TBL] [Abstract][Full Text] [Related]
7. A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila. Fillingham JS; Thing TA; Vythilingum N; Keuroghlian A; Bruno D; Golding GB; Pearlman RE Eukaryot Cell; 2004 Feb; 3(1):157-69. PubMed ID: 14871946 [TBL] [Abstract][Full Text] [Related]
8. A small family of elements with long inverted repeats is located near sites of developmentally regulated DNA rearrangement in Tetrahymena thermophila. Wells JM; Ellingson JL; Catt DM; Berger PJ; Karrer KM Mol Cell Biol; 1994 Sep; 14(9):5939-49. PubMed ID: 8065327 [TBL] [Abstract][Full Text] [Related]
9. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats. Huvos PE; Wu M; Gorovsky MA J Eukaryot Microbiol; 1998; 45(2):189-97. PubMed ID: 9561773 [TBL] [Abstract][Full Text] [Related]
10. Programmed DNA rearrangement from an intron during nuclear development in Tetrahymena thermophila: molecular analysis and identification of potential cis-acting sequences. Li J; Pearlman RE Nucleic Acids Res; 1996 May; 24(10):1943-9. PubMed ID: 8657578 [TBL] [Abstract][Full Text] [Related]
11. A micronucleus-specific sequence exists in the 5'-upstream region of calmodulin gene in Tetrahymena thermophila. Katoh M; Hirono M; Takemasa T; Kimura M; Watanabe Y Nucleic Acids Res; 1993 May; 21(10):2409-14. PubMed ID: 8506136 [TBL] [Abstract][Full Text] [Related]
12. Germ line-specific DNA sequences are present on all five micronuclear chromosomes in Tetrahymena thermophila. Karrer KM Mol Cell Biol; 1983 Nov; 3(11):1909-19. PubMed ID: 6656759 [TBL] [Abstract][Full Text] [Related]
13. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent. Liu Y; Song X; Gorovsky MA; Karrer KM Eukaryot Cell; 2005 Feb; 4(2):421-31. PubMed ID: 15701804 [TBL] [Abstract][Full Text] [Related]
14. A novel chromodomain protein, pdd3p, associates with internal eliminated sequences during macronuclear development in Tetrahymena thermophila. Nikiforov MA; Gorovsky MA; Allis CD Mol Cell Biol; 2000 Jun; 20(11):4128-34. PubMed ID: 10805754 [TBL] [Abstract][Full Text] [Related]
15. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila. Tschunko AH; Loechel RH; McLaren NC; Allen SL Genetics; 1987 Nov; 117(3):451-66. PubMed ID: 2826287 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in tetrahymenine ciliates. Coyne RS; Yao MC Genetics; 1996 Dec; 144(4):1479-87. PubMed ID: 8978037 [TBL] [Abstract][Full Text] [Related]
17. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus. Hansen TS; Andreasen PH; Dreisig H; Højrup P; Nielsen H; Engberg J; Kristiansen K Gene; 1991 Sep; 105(2):143-50. PubMed ID: 1937011 [TBL] [Abstract][Full Text] [Related]
18. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome. Yakisich JS; Kapler GM Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and genetic mapping. Cassidy-Hanley D; Bisharyan Y; Fridman V; Gerber J; Lin C; Orias E; Orias JD; Ryder H; Vong L; Hamilton EP Genetics; 2005 Aug; 170(4):1623-31. PubMed ID: 15956676 [TBL] [Abstract][Full Text] [Related]
20. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Chalker DL; Yao MC Mol Cell Biol; 1996 Jul; 16(7):3658-67. PubMed ID: 8668182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]