These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8021830)

  • 1. Photolytic manipulation of Ca2+ and the time course of slow, Ca(2+)-activated K+ current in rat hippocampal neurones.
    Lancaster B; Zucker RS
    J Physiol; 1994 Mar; 475(2):229-39. PubMed ID: 8021830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones.
    Lancaster B; Batchelor AM
    J Physiol; 2000 Jan; 522 Pt 2(Pt 2):231-46. PubMed ID: 10639100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering.
    Velumian AA; Carlen PL
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):201-16. PubMed ID: 10226160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-dependent inactivation of Ca2+ current in Aplysia neurons: kinetic studies using photolabile Ca2+ chelators.
    Fryer MW; Zucker RS
    J Physiol; 1993 May; 464():501-28. PubMed ID: 8229815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca(2+)-dependent block and potentiation of L-type calcium current in guinea-pig ventricular myocytes.
    Bates SE; Gurney AM
    J Physiol; 1993 Jul; 466():345-65. PubMed ID: 8410697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons.
    Sah P; Clements JD
    J Neurosci; 1999 May; 19(10):3657-64. PubMed ID: 10233997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms.
    Hadley RW; Lederer WJ
    J Physiol; 1991 Dec; 444():257-68. PubMed ID: 1668348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors.
    Hardie RC
    J Neurosci; 1995 Jan; 15(1 Pt 2):889-902. PubMed ID: 7529832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.
    Azouz R; Jensen MS; Yaari Y
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):211-23. PubMed ID: 8730596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-released intracellular Ca2+ rapidly blocks Ba2+ current in Lymnaea neurons.
    Johnson BD; Byerly L
    J Physiol; 1993 Mar; 462():321-47. PubMed ID: 8331587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential time-course of slow afterhyperpolarizations and associated Ca2+ transients in rat CA1 pyramidal neurons: further dissociation by Ca2+ buffer.
    Jahromi BS; Zhang L; Carlen PL; Pennefather P
    Neuroscience; 1999; 88(3):719-26. PubMed ID: 10363812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.
    Delaney KR; Zucker RS
    J Physiol; 1990 Jul; 426():473-98. PubMed ID: 1977904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus.
    Alger BE; Williamson A
    J Physiol; 1988 May; 399():191-205. PubMed ID: 3404462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Millisecond studies of calcium-dependent exocytosis in pituitary melanotrophs: comparison of the photolabile calcium chelators nitrophenyl-EGTA and DM-nitrophen.
    Parsons TD; Ellis-Davies GC; Almers W
    Cell Calcium; 1996 Mar; 19(3):185-92. PubMed ID: 8732258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices.
    Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL
    J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons.
    Lenz RA; Alger BE
    J Physiol; 1999 Nov; 521 Pt 1(Pt 1):147-57. PubMed ID: 10562341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-clamp analysis of the potentiation of the slow Ca2+-activated K+ current in hippocampal pyramidal neurons.
    Borde M; Bonansco C; Fernández de Sevilla D; Le Ray D; Buño W
    Hippocampus; 2000; 10(2):198-206. PubMed ID: 10791842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium currents operated by thyrotrophin-releasing hormone in dissociated CA1 pyramidal neurones of rat hippocampus.
    Ebihara S; Akaike N
    J Physiol; 1993 Dec; 472():689-710. PubMed ID: 8145166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons.
    Hotson JR; Prince DA
    J Neurophysiol; 1980 Feb; 43(2):409-19. PubMed ID: 6247461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.