These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8022124)

  • 1. Involvement of carbon monoxide in long-term potentiation in the dentate gyrus of anesthetized rats.
    Ikegaya Y; Saito H; Matsuki N
    Jpn J Pharmacol; 1994 Mar; 64(3):225-7. PubMed ID: 8022124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde carbon monoxide is required for induction of long-term potentiation in rat superior cervical ganglion.
    Alkadhi KA; Al-Hijailan RS; Malik K; Hogan YH
    J Neurosci; 2001 May; 21(10):3515-20. PubMed ID: 11331380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins.
    Meffert MK; Haley JE; Schuman EM; Schulman H; Madison DV
    Neuron; 1994 Nov; 13(5):1225-33. PubMed ID: 7524564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation by metabotropic glutamate receptor of long-term potentiation of population spikes in the dentate gyrus in vivo.
    Abe K; Saito H
    Eur J Pharmacol; 1994 Jan; 251(2-3):295-8. PubMed ID: 8149983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice.
    Poss KD; Thomas MJ; Ebralidze AK; O'Dell TJ; Tonegawa S
    Neuron; 1995 Oct; 15(4):867-73. PubMed ID: 7576635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of carbon monoxide production and enhanced spatial learning by tin protoporphyrin.
    Bing O; Grundemar L; Ny L; Möller C; Heilig M
    Neuroreport; 1995 Jul; 6(10):1369-72. PubMed ID: 7488726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of long-term potentiation by inhibitors of haem oxygenase.
    Stevens CF; Wang Y
    Nature; 1993 Jul; 364(6433):147-9. PubMed ID: 8321285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats.
    Lin CH; Lo WC; Hsiao M; Tseng CJ
    Hypertension; 2003 Sep; 42(3):380-5. PubMed ID: 12913065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of depolarization-induced glutamate release by heme oxygenase inhibitor: possible role of carbon monoxide in synaptic transmission.
    Shinomura T; Nakao S; Mori K
    Neurosci Lett; 1994 Jan; 166(2):131-4. PubMed ID: 7909923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus.
    Zhuo M; Laitinen JT; Li XC; Hawkins RD
    Learn Mem; 1998; 5(6):467-80. PubMed ID: 10489262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus.
    Zhuo M; Laitinen JT; Li XC; Hawkins RD
    Learn Mem; 1999; 6(1):63-76. PubMed ID: 10355525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of basolateral amygdala neuron activity for the induction of long-term potentiation in the dentate gyrus in vivo.
    Ikegaya Y; Saito H; Abe K
    Brain Res; 1995 Feb; 671(2):351-4. PubMed ID: 7743229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does endogenous zinc protoporphyrin modulate carbon monoxide formation from heme? Implications for long-term potentiation, memory, and cognitive function.
    Marks GS; Nakatsu K; Brien JF
    Can J Physiol Pharmacol; 1993; 71(10-11):753-4. PubMed ID: 8143232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus.
    Zhuo M; Small SA; Kandel ER; Hawkins RD
    Science; 1993 Jun; 260(5116):1946-50. PubMed ID: 8100368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of hippocampal CO production in the acquisition and consolidation of inhibitory avoidance learning.
    Bernabeu R; Princ F; de Stein ML; Fin C; Juknat AA; Batile A; Izquierdo I; Medina JH
    Neuroreport; 1995 Feb; 6(3):516-8. PubMed ID: 7766855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of ginsenoside Rb1 and malonylginsenoside Rb1 on long-term potentiation in the dentate gyrus of rats.
    Abe K; Cho SI; Kitagawa I; Nishiyama N; Saito H
    Brain Res; 1994 Jun; 649(1-2):7-11. PubMed ID: 7953656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spermine facilitates the generation of long-term potentiation of evoked potential in the dentate gyrus of anesthetized rats.
    Chida N; Saito H; Abe K
    Brain Res; 1992 Oct; 593(1):57-62. PubMed ID: 1360866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuated hippocampal long-term potentiation in basolateral amygdala-lesioned rats.
    Ikegaya Y; Saito H; Abe K
    Brain Res; 1994 Sep; 656(1):157-64. PubMed ID: 7804830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide contributes to the constipating effects of granisetron in rat colon.
    Nacci C; Fanelli M; Potenza MA; Leo V; Montagnani M; De Salvia MA
    World J Gastroenterol; 2016 Nov; 22(42):9333-9345. PubMed ID: 27895421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activin selectively abolishes hippocampal long-term potentiation induced by weak tetanic stimulation in vivo.
    Ikegaya Y; Saito H; Torii K; Nishiyama N
    Jpn J Pharmacol; 1997 Sep; 75(1):87-9. PubMed ID: 9334889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.