BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8022201)

  • 1. The C.B.17 scid mouse strain as a model for human disseminated leukaemia and myeloma in vivo.
    Cattan AR; Douglas E
    Leuk Res; 1994 Jul; 18(7):513-22. PubMed ID: 8022201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of a CB17 scid mouse model and the tetrazolium-dye assay using human haematological tumour cell lines.
    Cattan AR; Maung ZT
    Cancer Chemother Pharmacol; 1996; 38(6):548-52. PubMed ID: 8823497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.
    Lawson MA; Paton-Hough JM; Evans HR; Walker RE; Harris W; Ratnabalan D; Snowden JA; Chantry AD
    PLoS One; 2015; 10(3):e0119546. PubMed ID: 25768011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BCL-2 expression by leukaemic blasts in a SCID mouse model of biphenotypic leukaemia associated with the t(4;11)(q21;q23) translocation.
    Pocock CF; Malone M; Booth M; Evans M; Morgan G; Greil J; Cotter FE
    Br J Haematol; 1995 Aug; 90(4):855-67. PubMed ID: 7669664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapy of human T-cell acute lymphoblastic leukaemia with a combination of anti-CD7 and anti-CD38-SAPORIN immunotoxins is significantly better than therapy with each individual immunotoxin.
    Flavell DJ; Boehm DA; Noss A; Warnes SL; Flavell SU
    Br J Cancer; 2001 Feb; 84(4):571-8. PubMed ID: 11207056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of animal models in multiple myeloma.
    Libouban H
    Morphologie; 2015 Jun; 99(325):63-72. PubMed ID: 25898798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SCID mouse environment causes immunophenotypic changes in human immature T-cell lines.
    Uittenbogaart CH; Anisman DJ; Tary-Lehmann M; Vollger LW; Breit TM; Van Dongen JJ; Saxon A
    Int J Cancer; 1994 Feb; 56(4):546-51. PubMed ID: 8112890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a bioluminescent imaging-based in vivo leukemia model by intra-bone marrow injection.
    Lee MW; Kim HJ; Yoo KH; Kim DS; Yang JM; Kim HR; Noh YH; Baek H; Kwon H; Son MH; Lee SH; Cheuh HW; Jung HL; Sung KW; Koo HH
    Int J Oncol; 2012 Dec; 41(6):2047-56. PubMed ID: 23007607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disseminated growth of a human multiple myeloma cell line in mice with severe combined immunodeficiency disease.
    Huang YW; Richardson JA; Tong AW; Zhang BQ; Stone MJ; Vitetta ES
    Cancer Res; 1993 Mar; 53(6):1392-6. PubMed ID: 8443818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease.
    Paton-Hough J; Chantry AD; Lawson MA
    Bone; 2015 Aug; 77():57-68. PubMed ID: 25868800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severe combined immunodeficiency (SCID) mouse modeling of P-glycoprotein chemosensitization in multidrug-resistant human myeloma xenografts.
    Bellamy WT; Odeleye A; Huizenga E; Dalton WS; Weinstein RS; Grogan TM
    Clin Cancer Res; 1995 Dec; 1(12):1563-70. PubMed ID: 9815957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiopharmaceutical therapy of 5T33 murine myeloma by sequential treatment with samarium-153 ethylenediaminetetramethylene phosphonate, melphalan, and bone marrow transplantation.
    Turner JH; Claringbold PG; Manning LS; O'Donoghue HL; Berger JD; Glancy RJ
    J Natl Cancer Inst; 1993 Sep; 85(18):1508-13. PubMed ID: 8360933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCID mouse as a model for multiple myeloma.
    Ahsmann EJ; van Tol MJ; Oudeman-Gruber J; Lokhorst H; Uytdehaag FG; Schuurman HJ; Bloem AC
    Br J Haematol; 1995 Feb; 89(2):319-27. PubMed ID: 7873382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary antineoplastic activity of the cytosine nucleoside analogues troxacitabine (Troxatyl) and cytarabine in human leukemia cells.
    Bouffard DY; Jolivet J; Leblond L; Hamelin B; Ouellet F; Barbeau S; Richard A; Gourdeau H
    Cancer Chemother Pharmacol; 2003 Dec; 52(6):497-506. PubMed ID: 12955470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonirradiated NOD/SCID-human chimeric animal model for primary human multiple myeloma: a potential in vivo culture system.
    Huang SY; Tien HF; Su FH; Hsu SM
    Am J Pathol; 2004 Feb; 164(2):747-56. PubMed ID: 14742278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterotransplantation of human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice.
    Tong AW; Huang YW; Zhang BQ; Netto G; Vitetta ES; Stone MJ
    Anticancer Res; 1993; 13(3):593-7. PubMed ID: 8391243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SCID-hu myeloma model.
    Epstein J; Yaccoby S
    Methods Mol Med; 2005; 113():183-90. PubMed ID: 15968103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal models: Towards a myeloma mouse.
    DeWeerdt S
    Nature; 2011 Dec; 480(7377):S38-9. PubMed ID: 22169799
    [No Abstract]   [Full Text] [Related]  

  • 19. Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow.
    Yamashita K; Iwasaki T; Tsujimura T; Sugihara A; Yamada N; Ueda H; Okamura H; Futani H; Maruo S; Terada N
    Oncol Rep; 2002; 9(6):1237-44. PubMed ID: 12375027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo.
    Hideshima T; Neri P; Tassone P; Yasui H; Ishitsuka K; Raje N; Chauhan D; Podar K; Mitsiades C; Dang L; Munshi N; Richardson P; Schenkein D; Anderson KC
    Clin Cancer Res; 2006 Oct; 12(19):5887-94. PubMed ID: 17020997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.