These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8022273)

  • 1. The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability.
    Wang AY; Cronan JE
    Mol Microbiol; 1994 Mar; 11(6):1009-17. PubMed ID: 8022273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ppGpp on Escherichia coli cyclopropane fatty acid synthesis is mediated through the RpoS sigma factor (sigmaS).
    Eichel J; Chang YY; Riesenberg D; Cronan JE
    J Bacteriol; 1999 Jan; 181(2):572-6. PubMed ID: 9882672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene.
    Chang YY; Wang AY; Cronan JE
    Mol Microbiol; 1994 Mar; 11(6):1019-28. PubMed ID: 8022274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium.
    Kim BH; Kim S; Kim HG; Lee J; Lee IS; Park YK
    Microbiology (Reading); 2005 Jan; 151(Pt 1):209-218. PubMed ID: 15632439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences.
    Lacour S; Landini P
    J Bacteriol; 2004 Nov; 186(21):7186-95. PubMed ID: 15489429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability.
    Lange R; Hengge-Aronis R
    Genes Dev; 1994 Jul; 8(13):1600-12. PubMed ID: 7525405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro functional characterization of overproduced Escherichia coli katF/rpoS gene product.
    Nguyen LH; Jensen DB; Thompson NE; Gentry DR; Burgess RR
    Biochemistry; 1993 Oct; 32(41):11112-7. PubMed ID: 8218173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli.
    Chang YY; Cronan JE
    Mol Microbiol; 1999 Jul; 33(2):249-59. PubMed ID: 10411742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli.
    Tanaka K; Takayanagi Y; Fujita N; Ishihama A; Takahashi H
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3511-5. PubMed ID: 8475100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic instability of Escherichia coli cyclopropane fatty acid synthase is due to RpoH-dependent proteolysis.
    Chang YY; Eichel J; Cronan JE
    J Bacteriol; 2000 Aug; 182(15):4288-94. PubMed ID: 10894739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440.
    Pini C; Godoy P; Bernal P; Ramos JL; Segura A
    FEMS Microbiol Lett; 2011 Aug; 321(2):107-14. PubMed ID: 21623893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation.
    Grandvalet C; Assad-García JS; Chu-Ky S; Tollot M; Guzzo J; Gresti J; Tourdot-Maréchal R
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2611-2619. PubMed ID: 18757795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.
    Grogan DW; Cronan JE
    J Bacteriol; 1984 Apr; 158(1):286-95. PubMed ID: 6325391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing preferential utilization of RNA polymerase containing sigma-38 in stationary-phase gene expression in Escherichia coli.
    Kim EY; Shin MS; Rhee JH; Choy HE
    J Microbiol; 2004 Jun; 42(2):103-10. PubMed ID: 15357303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Escherichia coli ftsK1 mutation attenuates the induction of sigma(S)-dependent genes upon transition to stationary phase.
    Diez AA; Tunlid A; Nyström T
    FEMS Microbiol Lett; 2002 Jan; 206(1):19-23. PubMed ID: 11786251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D.
    Jishage M; Ishihama A
    J Bacteriol; 1999 Jun; 181(12):3768-76. PubMed ID: 10368152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation of cyclopropane fatty acid synthesis under stringent control in Escherichia coli.
    Taguchi M; Izui K; Katsuki H
    J Biochem; 1980 Dec; 88(6):1879-82. PubMed ID: 7007364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KatF (sigma S) synthesis in Escherichia coli is subject to posttranscriptional regulation.
    Loewen PC; von Ossowski I; Switala J; Mulvey MR
    J Bacteriol; 1993 Apr; 175(7):2150-3. PubMed ID: 8458857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The P1 promoter of the Escherichia coli rpoH gene is utilized by sigma 70 -RNAP or sigma s -RNAP depending on growth phase.
    Janaszak A; Nadratowska-Wesołowska B; Konopa G; Taylor A
    FEMS Microbiol Lett; 2009 Feb; 291(1):65-72. PubMed ID: 19076234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase.
    Altuvia S; Almirón M; Huisman G; Kolter R; Storz G
    Mol Microbiol; 1994 Jul; 13(2):265-72. PubMed ID: 7984106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.