BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8022280)

  • 1. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein.
    Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A
    Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities.
    Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR
    J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition.
    Jones JM; Welty DJ; Nakai H
    J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication of ClpXP protease hypersensitivity to bacteriophage Mu repressor isoforms.
    Welty DJ; Jones JM; Nakai H
    J Mol Biol; 1997 Sep; 272(1):31-41. PubMed ID: 9299335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derepression of bacteriophage mu transposition functions by truncated forms of the immunity repressor.
    O'Handley D; Nakai H
    J Mol Biol; 2002 Sep; 322(2):311-24. PubMed ID: 12217693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation-induced Mucts62-mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp.
    Lamrani S; Ranquet C; Gama MJ; Nakai H; Shapiro JA; Toussaint A; Maenhaut-Michel G
    Mol Microbiol; 1999 Apr; 32(2):327-43. PubMed ID: 10231489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility.
    Marshall-Batty KR; Nakai H
    J Biol Chem; 2008 Apr; 283(14):9060-70. PubMed ID: 18230617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virulence in bacteriophage Mu: a case of trans-dominant proteolysis by the Escherichia coli Clp serine protease.
    Geuskens V; Mhammedi-Alaoui A; Desmet L; Toussaint A
    EMBO J; 1992 Dec; 11(13):5121-7. PubMed ID: 1464331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of heat shock-provoked disassembly of the coliphage lambda replication complex.
    Wegrzyn A; Herman-Antosiewicz A; Taylor K; Wegrzyn G
    J Bacteriol; 1998 May; 180(9):2475-83. PubMed ID: 9573201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid degradation of bacteriophage lambda O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells.
    Czyz A; Zielke R; Wegrzyn G
    Arch Virol; 2001 Aug; 146(8):1487-98. PubMed ID: 11676412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    OsterĂ¥s M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.