These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8022825)

  • 1. The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical.
    Wink DA; Nims RW; Saavedra JE; Utermahlen WE; Ford PC
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6604-8. PubMed ID: 8022825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical.
    Wink DA; Wink CB; Nims RW; Ford PC
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):11-5. PubMed ID: 7843082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B; Cabrini L
    Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical.
    Wink DA; Nims RW; Desrosiers MF; Ford PC; Keefer LK
    Chem Res Toxicol; 1991; 4(5):510-2. PubMed ID: 1665352
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of ascorbic acid.
    Zhao MJ; Jung L
    Free Radic Res; 1995 Sep; 23(3):229-43. PubMed ID: 7581818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c.
    Rush JD; Koppenol WH
    J Biol Chem; 1986 May; 261(15):6730-3. PubMed ID: 3009473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical driven Fenton reactions--evidence from paraquat radical studies for production of tetravalent iron in the presence and absence of ethylenediaminetetraacetic acid.
    Sutton HC; Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1987 Aug; 256(2):462-71. PubMed ID: 3113335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the competitive degradation of deoxyribose and other biomolecules by hydroxyl radicals produced by the Fenton reaction.
    Zaho MJ; Jung L; Tanielian C; Mechin R
    Free Radic Res; 1994 Jun; 20(6):345-63. PubMed ID: 8081451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes.
    Bossmann SH; Oliveros E; Kantor M; Niebler S; Bonfill A; Shahin N; Wörner M; Braun AM
    Water Sci Technol; 2004; 49(4):75-80. PubMed ID: 15077951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the deoxyribose test to detect strong iron binding.
    Sadowska-Bartosz I; Galiniak S; Bartosz G
    Acta Biochim Pol; 2017; 64(1):195-198. PubMed ID: 27991936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fenton reagents.
    Goldstein S; Meyerstein D; Czapski G
    Free Radic Biol Med; 1993 Oct; 15(4):435-45. PubMed ID: 8225025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of iron and hydrogen peroxide: the Fenton reaction.
    Winterbourn CC
    Toxicol Lett; 1995 Dec; 82-83():969-74. PubMed ID: 8597169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low levels of iron enhance UV/H
    Ulliman SL; McKay G; Rosario-Ortiz FL; Linden KG
    Water Res; 2018 Mar; 130():234-242. PubMed ID: 29227872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe2+, Fe3+, and oxygen react with DNA-derived radicals formed during iron-mediated Fenton reactions.
    Henle ES; Luo Y; Linn S
    Biochemistry; 1996 Sep; 35(37):12212-9. PubMed ID: 8810929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-radical scavenging capacity using the fenton reaction with rhodamine B as the spectrophotometric indicator.
    Yu F; Xu D; Lei R; Li N; Li K
    J Agric Food Chem; 2008 Feb; 56(3):730-5. PubMed ID: 18189354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fenton activity of iron(III) in the presence of deferiprone.
    Devanur LD; Neubert H; Hider RC
    J Pharm Sci; 2008 Apr; 97(4):1454-67. PubMed ID: 17724662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.