BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8022859)

  • 1. Are there limits to enzyme-inhibitor binding discrimination? Inferences from the behavior of nucleoside deaminases.
    Wolfenden R
    Pharmacol Ther; 1993 Nov; 60(2):235-44. PubMed ID: 8022859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1995 Apr; 34(14):4516-23. PubMed ID: 7718553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D; Wolfenden R
    Biochemistry; 1998 Aug; 37(34):11873-8. PubMed ID: 9718310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1996 Feb; 35(5):1335-41. PubMed ID: 8634261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1996 Jan; 35(3):948-54. PubMed ID: 8547277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effects on the catalytic efficiency, rate enhancement, and transition state affinity of cytidine deaminase, and the thermodynamic consequences for catalysis of removing a substrate "anchor".
    Snider MJ; Gaunitz S; Ridgway C; Short SA; Wolfenden R
    Biochemistry; 2000 Aug; 39(32):9746-53. PubMed ID: 10933791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vitamin B2 biosynthesis: eubacterial RibG and fungal Rib2 deaminases.
    Chen SC; Shen CY; Yen TM; Yu HC; Chang TH; Lai WL; Liaw SH
    Acta Crystallogr D Biol Crystallogr; 2013 Feb; 69(Pt 2):227-36. PubMed ID: 23385458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition state and multisubstrate analog inhibitors.
    Radzicka A; Wolfenden R
    Methods Enzymol; 1995; 249():284-312. PubMed ID: 7791615
    [No Abstract]   [Full Text] [Related]  

  • 10. Catalysis by entropic effects: the action of cytidine deaminase on 5,6-dihydrocytidine.
    Snider MJ; Lazarevic D; Wolfenden R
    Biochemistry; 2002 Mar; 41(12):3925-30. PubMed ID: 11900535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major contribution of a carboxymethyl group to transition-state stabilization by cytidine deaminase: mutation and rescue.
    Carlow DC; Smith AA; Yang CC; Short SA; Wolfenden R
    Biochemistry; 1995 Apr; 34(13):4220-4. PubMed ID: 7703234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.
    Carlow DC; Carter CW; Mejlhede N; Neuhard J; Wolfenden R
    Biochemistry; 1999 Sep; 38(38):12258-65. PubMed ID: 10493793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.
    Betts L; Xiang S; Short SA; Wolfenden R; Carter CW
    J Mol Biol; 1994 Jan; 235(2):635-56. PubMed ID: 8289286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, purification, and characterization of blasticidin S deaminase (BSD) from Aspergillus terreus: the role of catalytic zinc in enzyme structure.
    Kimura M; Sekido S; Isogai Y; Yamaguchi I
    J Biochem; 2000 Jun; 127(6):955-63. PubMed ID: 10833262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis.
    Guo H; Rao N; Xu Q; Guo H
    J Am Chem Soc; 2005 Mar; 127(9):3191-7. PubMed ID: 15740159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight of a cytidine deaminase complex with an imperfect transition state analogue inhibitor: mass spectrometric evidence for the presence of a trapped water molecule.
    Schroeder GK; Zhou L; Snider MJ; Chen X; Wolfenden R
    Biochemistry; 2012 Aug; 51(32):6476-86. PubMed ID: 22775299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1997 Apr; 36(16):4768-74. PubMed ID: 9125497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-substrate complexes of adenosine and cytidine deaminases: absence of accumulation of water adducts.
    Shih P; Wolfenden R
    Biochemistry; 1996 Apr; 35(15):4697-703. PubMed ID: 8664259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphorus-containing pyrimidine analog as a potent inhibitor of cytidine deaminase.
    Ashley GW; Bartlett PA
    Biochem Biophys Res Commun; 1982 Oct; 108(4):1467-74. PubMed ID: 6758781
    [No Abstract]   [Full Text] [Related]  

  • 20. APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA.
    Bohn JA; Thummar K; York A; Raymond A; Brown WC; Bieniasz PD; Hatziioannou T; Smith JL
    Nat Commun; 2017 Oct; 8(1):1021. PubMed ID: 29044109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.