These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8022907)

  • 1. Age-related impairment of food anticipatory locomotor activity in rats.
    Shibata S; Minamoto Y; Ono M; Watanabe S
    Physiol Behav; 1994 May; 55(5):875-8. PubMed ID: 8022907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuating effect of arecoline and physostigmine on an impairment of mealtime-associated activity rhythm in old rats.
    Ono M; Minamoto Y; Shibata S; Watanabe S
    Physiol Behav; 1995 Jan; 57(1):189-91. PubMed ID: 7878117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 on food-anticipatory activity rhythm in the rat.
    Ono M; Shibata S; Minamoto Y; Watanabe S
    Physiol Behav; 1996; 59(4-5):585-9. PubMed ID: 8778838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuating effect of bifemelane on an impairment of mealtime-associated activity rhythm in aged and MK-801-treated rats.
    Shibata S; Ono M; Minamoto Y; Watanabe S
    Pharmacol Biochem Behav; 1995 Feb; 50(2):207-10. PubMed ID: 7740059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuating effect of serotonin receptor antagonists on impairment of mealtime-associated activity rhythm in old rats.
    Shibata S; Ono M; Minamoto Y; Watanabe S
    Pharmacol Biochem Behav; 1995; 51(2-3):541-4. PubMed ID: 7667383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging impairs methamphetamine-induced free-running and anticipatory locomotor activity rhythms in rats.
    Shibata S; Minamoto Y; Ono M; Watanabe S
    Neurosci Lett; 1994 May; 172(1-2):107-10. PubMed ID: 8084510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions.
    Mistlberger RE; Rechtschaffen A
    Physiol Behav; 1984 Aug; 33(2):227-35. PubMed ID: 6505064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus.
    Landry GJ; Yamakawa GR; Mistlberger RE
    Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.
    Petersen CC; Patton DF; Parfyonov M; Mistlberger RE
    Behav Neurosci; 2014 Dec; 128(6):689-702. PubMed ID: 25285457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticipatory activity rhythms under daily schedules of water access in the rat.
    Mistlberger RE
    J Biol Rhythms; 1992; 7(2):149-60. PubMed ID: 1611130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neurosci Lett; 2008 Jul; 440(1):54-8. PubMed ID: 18541376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging affects development and persistence of feeding-associated circadian rhythm in rat plasma corticosterone.
    Honma S; Katsuno Y; Abe H; Honma K
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1514-20. PubMed ID: 8997347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vagotomy on entrainment of activity rhythms to food access.
    Comperatore CA; Stephan FK
    Physiol Behav; 1990 Apr; 47(4):671-8. PubMed ID: 2385637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aging on food-entrained circadian rhythms in the rat.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Neurobiol Aging; 1990; 11(6):619-24. PubMed ID: 2280805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food-entrainable circadian oscillators in the brain.
    Verwey M; Amir S
    Eur J Neurosci; 2009 Nov; 30(9):1650-7. PubMed ID: 19863660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of thalamic paraventricular nucleus in the anticipatory reaction under food restriction in the rat.
    Nakahara K; Fukui K; Murakami N
    J Vet Med Sci; 2004 Oct; 66(10):1297-300. PubMed ID: 15528870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; PĂ©vet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.
    Verwey M; Lam GY; Amir S
    Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding.
    Verwey M; Amir S
    Neuroscience; 2011 Sep; 192():304-11. PubMed ID: 21767615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.