These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8023086)

  • 1. Quantitative elemental mapping of biomedical specimens using the nuclear microprobe.
    Pallon J; Knox J
    Scanning Microsc; 1993 Dec; 7(4):1207-11; discussion 1211-4. PubMed ID: 8023086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dispersive X-ray microanalysis, neutron activation analysis and atomic absorption spectrometry--comparison using biological specimens.
    Wróblewski R; Wroblewski J; Lundström H; Edström L; Jansson E
    Scanning Microsc; 1989 Jun; 3(2):467-72. PubMed ID: 2814396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elemental analysis on freeze-dried sections of human skin: studies by electron microprobe and particle induced X-ray emission analysis.
    Forslind B; Roomans GM; Carlsson LE; Malmqvist KG; Akselsson KR
    Scan Electron Microsc; 1984; (Pt 2):755-9. PubMed ID: 6091258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron probe microanalysis of chemical elemental content of single human red cells.
    Lechene CP; Bronner C; Kirk RG
    J Cell Physiol; 1977 Jan; 90(1):117-26. PubMed ID: 833208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear microprobe: a microanalytical technique in biology.
    Moretto P
    Cell Mol Biol (Noisy-le-grand); 1996 Feb; 42(1):1-16. PubMed ID: 8833662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a methodology for calcium, iron, potassium, magnesium, manganese, and zinc quantification in teas using X-ray spectroscopy and multivariate calibration.
    Pereira FM; Pereira-Filho ER; Bueno MI
    J Agric Food Chem; 2006 Aug; 54(16):5723-30. PubMed ID: 16881669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-induced and electron-induced X-ray microanalysis of insulin-secreting cells.
    Pålsgård E; Lindh U; Juntti-Berggren L; Berggren PO; Roomans GM; Grime GW
    Scanning Microsc Suppl; 1994; 8():325-32; discussion 332-3. PubMed ID: 7638496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental imaging of dental hard tissues by secondary ion mass spectrometry.
    Chabala JM; Edward S; Levi-Setti R; Lodding A; Lundgren T; Norén JG; Odelius H
    Swed Dent J; 1988; 12(5):201-12. PubMed ID: 3217850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standards for X-ray microanalysis of calcified structures.
    Lopez-Escamez JA; Campos A
    Scanning Microsc Suppl; 1994; 8():171-85. PubMed ID: 7638486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New applications of the nuclear microprobe for biological samples.
    Pallon J; Malmqvist K
    Scanning Microsc Suppl; 1994; 8():317-24. PubMed ID: 7638495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observations on electron probe x-ray microanalysis compared to other methods for measuring intracellular elemental concentration.
    Smith NK; Cameron IL
    Scan Electron Microsc; 1981; (Pt 2):395-408. PubMed ID: 7034177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of elemental content distribution in femoral head slice with osteoporosis by SRXRF microprobe.
    Zhang Y; Cheng F; Li D; Wang Y; Zhang G; Liao W; Tang T; Huang Y; He W
    Biol Trace Elem Res; 2005 Feb; 103(2):177-85. PubMed ID: 15772441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of 3D elemental mapping artefacts in biological specimens using Monte Carlo simulation.
    Scott K; Ritchie NW
    J Microsc; 2009 Feb; 233(2):331-9. PubMed ID: 19220700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foqus: a FORTRAN program for the quantitative analysis of x-ray spectra from thin biological specimens.
    Fuchs H; Fuchs W
    Scan Electron Microsc; 1981; (Pt 2):377-94. PubMed ID: 7034176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton microprobe and particle induced X-ray emission (PIXE) analysis for studies of pathological brain tissue.
    Malmqvist KG; Brun A; Inamura K; Martins E; Salford LG; Siesjö BK; Tapper UA; Themner K
    Scanning Microsc; 1988 Sep; 2(3):1685-93. PubMed ID: 3201203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton induced X-ray emission analysis of biological specimens--past and future.
    Forslind B; Malmqvist KG; Pallon J
    Scanning Microsc; 1991 Sep; 5(3):877-84. PubMed ID: 1808718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital processing of electron energy loss spectra and images.
    Leapman RD; Gorlen KE; Swyt CR
    Scan Electron Microsc; 1985; (Pt 1):1-13. PubMed ID: 4001848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microanalysis of calcium-rich human kidney stones at the NAC nuclear microprobe.
    Pineda CA; Rodgers AL; Prozesky VM; Przybylowicz WJ
    Cell Mol Biol (Noisy-le-grand); 1996 Feb; 42(1):119-26. PubMed ID: 8833673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron probe X-ray microanalysis for the study of cell physiology.
    Fernandez-Segura E; Warley A
    Methods Cell Biol; 2008; 88():19-43. PubMed ID: 18617026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specimen damage considerations in biological microprobe analysis.
    Kirz J
    Scan Electron Microsc; 1980; (Pt 2):239-49. PubMed ID: 6252602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.