These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8023141)

  • 21. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibody-catalyzed removal of the p-nitrobenzyl ester protecting group: the molecular basis of broad substrate specificity.
    Kurihara S; Tsumuraya T; Suzuki K; Kuroda M; Liu L; Takaoka Y; Fujii I
    Chemistry; 2000 May; 6(9):1656-62. PubMed ID: 10839182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetically controlled synthesis of dipeptides using ficin as biocatalyst.
    Monter B; Herzog B; Stehle P; Fürst P
    Biotechnol Appl Biochem; 1991 Oct; 14(2):183-91. PubMed ID: 1760130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and occurrence of N-malonylphenylalanine and related compounds in plants.
    Rosa N; Neish AC
    Can J Biochem; 1968 Aug; 46(8):799-806. PubMed ID: 5672861
    [No Abstract]   [Full Text] [Related]  

  • 27. Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen.
    Tramontano A; Janda KD; Lerner RA
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6736-40. PubMed ID: 3462723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A catalytic antibody that accelerates the hydrolysis of carbonate esters. Prediction of the binding-site structure of the substrate.
    Suzuki H; Mukouyama EB; Wada C; Kawamura-Konishi Y; Wada Y; Ono M
    J Protein Chem; 1998 Apr; 17(3):273-8. PubMed ID: 9588951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state.
    Gallacher G; Jackson CS; Searcey M; Goel R; Mellor GW; Smith CZ; Brocklehurst K
    Eur J Biochem; 1993 May; 214(1):197-207. PubMed ID: 8508792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic peptide formation catalyzed by an antibody ligase.
    Smithrud DB; Benkovic PA; Benkovic SJ; Roberts V; Liu J; Neagu I; Iwama S; Phillips BW; Smith AB; Hirschmann R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1953-8. PubMed ID: 10688882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibody-catalyzed cleavage of the D-Ala-D-Lac depsipeptide: an immunological approach to the problem of vancomycin resistance.
    Isomura S; Ashley JA; Wirsching P; Janda KD
    Bioorg Med Chem Lett; 2002 Mar; 12(6):861-4. PubMed ID: 11958980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of covalent binding antibodies.
    Armentano F; Knight T; Makker S; Tramontano A
    Immunol Lett; 2006 Feb; 103(1):51-7. PubMed ID: 16297987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of the broad substrate tolerance of the antibody 7B9-catalyzed hydrolysis of p-nitrobenzyl esters.
    Miyamoto N; Yoshimura M; Okubo Y; Suzuki-Nagata K; Tsumuraya T; Ito N; Fujii I
    Bioorg Med Chem; 2018 May; 26(8):1412-1417. PubMed ID: 29496413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibody-catalyzed rearrangement of the peptide bond.
    Gibbs RA; Taylor S; Benkovic SJ
    Science; 1992 Oct; 258(5083):803-5. PubMed ID: 1439788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An approach to sequence-specific antibody proteases. The use of haptens mimicking both a transition state and a distorted ground state.
    Smith RM; Yuan P; Weiner DP; Dutton CR; Hansen DE
    Appl Biochem Biotechnol; 1994; 47(2-3):329-42; discussion 342-3. PubMed ID: 7944347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibody catalysis of peptide bond formation.
    Jacobsen JR; Schultz PG
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5888-92. PubMed ID: 8016084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence-specific peptide cleavage catalyzed by an antibody.
    Iverson BL; Lerner RA
    Science; 1989 Mar; 243(4895):1184-8. PubMed ID: 2922606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of protease activity in antibody subunits.
    Sun M; Li L; Gao QS; Paul S
    Ann N Y Acad Sci; 1995 Sep; 764():573-5. PubMed ID: 7486588
    [No Abstract]   [Full Text] [Related]  

  • 40. Antibody catalysis of peptidyl-prolyl cis-trans isomerization in the folding of RNase T1.
    Ma L; Hsieh-Wilson LC; Schultz PG
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7251-6. PubMed ID: 9636134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.