These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8023355)
1. Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Kitazawa K; Tada T Stroke; 1994 Jul; 25(7):1400-4. PubMed ID: 8023355 [TBL] [Abstract][Full Text] [Related]
2. Inflammatory cytokine cascade released by leukocytes in cerebrospinal fluid after subarachnoid hemorrhage. Takizawa T; Tada T; Kitazawa K; Tanaka Y; Hongo K; Kameko M; Uemura KI Neurol Res; 2001 Oct; 23(7):724-30. PubMed ID: 11680512 [TBL] [Abstract][Full Text] [Related]
3. High CSF transforming growth factor beta levels after subarachnoid haemorrhage: association with chronic communicating hydrocephalus. Douglas MR; Daniel M; Lagord C; Akinwunmi J; Jackowski A; Cooper C; Berry M; Logan A J Neurol Neurosurg Psychiatry; 2009 May; 80(5):545-50. PubMed ID: 19066194 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. Flood C; Akinwunmi J; Lagord C; Daniel M; Berry M; Jackowski A; Logan A J Cereb Blood Flow Metab; 2001 Feb; 21(2):157-62. PubMed ID: 11176281 [TBL] [Abstract][Full Text] [Related]
5. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Yan H; Chen Y; Li L; Jiang J; Wu G; Zuo Y; Zhang JH; Feng H; Yan X; Liu F Brain Res; 2016 Jan; 1630():241-53. PubMed ID: 26556770 [TBL] [Abstract][Full Text] [Related]
6. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. Tada T; Kanaji M; Kobayashi S J Neuroimmunol; 1994 Mar; 50(2):153-8. PubMed ID: 8120136 [TBL] [Abstract][Full Text] [Related]
7. TGF beta1 and TGF beta2 and their role in posthemorrhagic hydrocephalus following SAH and IVH. Kaestner S; Dimitriou I J Neurol Surg A Cent Eur Neurosurg; 2013 Sep; 74(5):279-84. PubMed ID: 23690072 [TBL] [Abstract][Full Text] [Related]
8. Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Moinuddin SM; Tada T Neurol Res; 2000 Mar; 22(2):215-22. PubMed ID: 10763513 [TBL] [Abstract][Full Text] [Related]
9. The LRG-TGF-β-Alk-1/TGFßRII-Smads as Predictive Biomarkers of Chronic Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Ma D; Ma L; Zhao Y; Li Y; Ye W; Li X J Neurol Surg A Cent Eur Neurosurg; 2024 Sep; 85(5):457-463. PubMed ID: 37604195 [TBL] [Abstract][Full Text] [Related]
10. Comparison of cerebrospinal fluid biomarkers between idiopathic normal pressure hydrocephalus and subarachnoid hemorrhage-induced chronic hydrocephalus: a pilot study. Lee JH; Park DH; Back DB; Lee JY; Lee CI; Park KJ; Kang SH; Cho TH; Chung YG Med Sci Monit; 2012 Dec; 18(12):PR19-25. PubMed ID: 23197244 [TBL] [Abstract][Full Text] [Related]
11. Thrombin-induced TGF-β1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage. Li T; Zhang P; Yuan B; Zhao D; Chen Y; Zhang X Int J Mol Med; 2013 Mar; 31(3):660-6. PubMed ID: 23338707 [TBL] [Abstract][Full Text] [Related]
12. External hydrocephalus after aneurysm surgery: paradoxical response to ventricular shunting. Yoshimoto Y; Wakai S; Hamano M J Neurosurg; 1998 Mar; 88(3):485-9. PubMed ID: 9488302 [TBL] [Abstract][Full Text] [Related]
13. [Association of chronic hydrocephalus after aneurysmal subarachnoid hemorrhage with transforming growth factor-β1 levels and other risk factors]. Liu F; Yuan W; Liao D; Zhang T; Wang Z Nan Fang Yi Ke Da Xue Xue Bao; 2013 Mar; 33(3):382-5. PubMed ID: 23529236 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of transforming growth factor-beta2 and nitrated chondroitin sulfate proteoglycans in cerebrospinal fluid correlates with poor neurologic outcome in preterm hydrocephalus. Chow LC; Soliman A; Zandian M; Danielpour M; Krueger RC Biol Neonate; 2005; 88(1):1-11. PubMed ID: 15711035 [TBL] [Abstract][Full Text] [Related]
15. Soluble endoglin and transforming growth factor-β₁ and the development of vasospasm after spontaneous subarachnoid hemorrhage: a pilot study. Dietmann A; Lackner P; Fischer M; Broessner G; Pfausler B; Helbok R; Schmutzhard E; Beer R Cerebrovasc Dis; 2012; 33(1):16-22. PubMed ID: 22133666 [TBL] [Abstract][Full Text] [Related]
16. Cerebrospinal fluid tenascin-C increases preceding the development of chronic shunt-dependent hydrocephalus after subarachnoid hemorrhage. Suzuki H; Kinoshita N; Imanaka-Yoshida K; Yoshida T; Taki W Stroke; 2008 May; 39(5):1610-2. PubMed ID: 18323479 [TBL] [Abstract][Full Text] [Related]
17. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Borel CO; McKee A; Parra A; Haglund MM; Solan A; Prabhakar V; Sheng H; Warner DS; Niklason L Stroke; 2003 Feb; 34(2):427-33. PubMed ID: 12574555 [TBL] [Abstract][Full Text] [Related]
18. Intrathecal lactate predicting hydrocephalus after aneurysmal subarachnoid hemorrhage. Wang KC; Tang SC; Lee JE; Jeng JS; Lai DM; Huang SJ; Hsieh ST; Tu YK J Surg Res; 2015 Dec; 199(2):523-8. PubMed ID: 26076684 [TBL] [Abstract][Full Text] [Related]
19. Cerebrospinal fluid markers of neuroinflammation and coagulation in severe cerebral edema and chronic hydrocephalus after subarachnoid hemorrhage: a prospective study. Fang Y; Liu Y; Chen L; Wang J; Zhang J; Zhang H; Tian S; Zhang A; Zhang J; Zhang JH; Wang X; Yu J; Chen S J Neuroinflammation; 2024 Sep; 21(1):237. PubMed ID: 39334416 [TBL] [Abstract][Full Text] [Related]
20. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-β1 signaling activity following subarachnoid hemorrhage in rats. Liao F; Li G; Yuan W; Chen Y; Zuo Y; Rashid K; Zhang JH; Feng H; Liu F Exp Ther Med; 2016 Oct; 12(4):2537-2543. PubMed ID: 27698755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]