BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8023892)

  • 1. Transepithelial phosphate transport in rabbit proximal tubular cells adapted to phosphate deprivation.
    Scheinman SJ; Reid R; Coulson R; Jones DB; Ford SM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1609-18. PubMed ID: 8023892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-matrix interactions modulate transepithelial phosphate transport in P(i)-deprived OK cells.
    Barac-Nieto M; Weinman EJ; Spitzer A
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1272-7. PubMed ID: 17652432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: phosphate "adaptation".
    Reshkin SJ; Forgo J; Biber J; Murer H
    Pflugers Arch; 1991 Oct; 419(3-4):256-62. PubMed ID: 1745601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NMR study of cellular phosphates and membrane transport in renal proximal tubules.
    Chobanian MC; Anderson ME; Brazy PC
    Am J Physiol; 1995 Mar; 268(3 Pt 2):F375-84. PubMed ID: 7900836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38 MAPK.
    Lee YJ; Park SH; Jeung TO; Kim KW; Lee JH; Han HJ
    J Cell Physiol; 2005 Oct; 205(1):68-76. PubMed ID: 15880445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate uptake by proximal cells isolated from rabbit kidney: role of dexamethasone.
    Poujeol P; Vandewalle A
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F74-83. PubMed ID: 2990240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse.
    Lajeunesse D; Meyer RA; Hamel L
    Kidney Int; 1996 Nov; 50(5):1531-8. PubMed ID: 8914019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE; Morales MN
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells.
    Caverzasio J; Brown CD; Biber J; Bonjour JP; Murer H
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F122-7. PubMed ID: 3970160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional profile of the isolated uremic nephron: intrinsic adaptation of phosphate transport in the rabbit proximal tubule.
    Yanagawa N; Nissenson RA; Edwards B; Yeung P; Trizna W; Fine LG
    Kidney Int; 1983 May; 23(5):674-83. PubMed ID: 6876563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury.
    Andreoli SP; McAteer JA; Seifert SA; Kempson SA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F377-84. PubMed ID: 8214096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transepithelial acidification by cultures of rabbit proximal tubules grown on filters.
    Ford SM; Williams PD; Grassl S; Holohan PD
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C103-9. PubMed ID: 2372045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.
    Gukasyan HJ; Lee VH; Kim KJ; Kannan R
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal adaptation to dietary phosphate deprivation: role of proximal tubule brush-border membrane fluidity.
    Levine BS; Knibloe KA; Golchini K; Hashimoto S; Kurtz I
    Am J Physiol; 1991 May; 260(5 Pt 2):F613-8. PubMed ID: 2035648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of insulin-like growth factor I on phosphate transport in cultured proximal tubule cells.
    Hirschberg R; Ding H; Wanner C
    J Lab Clin Med; 1995 Nov; 126(5):428-34. PubMed ID: 7595027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of basolateral membranes that transport p-aminohippurate from primary cultures of rabbit kidney proximal tubule cells.
    Yang IS; Goldinger JM; Hong SK; Taub M
    J Cell Physiol; 1988 Jun; 135(3):481-7. PubMed ID: 3397387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate.
    Murer H; Werner A; Reshkin S; Wuarin F; Biber J
    Am J Physiol; 1991 May; 260(5 Pt 1):C885-99. PubMed ID: 2035618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.