BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8023973)

  • 1. Altered renal vascular responses in the aging rat kidney.
    Tank JE; Vora JP; Houghton DC; Anderson S
    Am J Physiol; 1994 Jun; 266(6 Pt 2):F942-8. PubMed ID: 8023973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II.
    Baylis C; Engels K; Samsell L; Harton P
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F74-8. PubMed ID: 8430832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haemodynamic effects of human alpha-calcitonin gene-related peptide following administration of endothelin-1 or NG-nitro-L-arginine methyl ester in conscious rats.
    Gardiner SM; Compton AM; Kemp PA; Bennett T; Foulkes R; Hughes B
    Br J Pharmacol; 1991 May; 103(1):1256-62. PubMed ID: 1878760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II.
    Barrett RJ; Droppleman DA
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F651-9. PubMed ID: 8238545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II and alpha 1-adrenergic tone in chronic nitric oxide blockade-induced hypertension.
    Qiu C; Engels K; Baylis C
    Am J Physiol; 1994 May; 266(5 Pt 2):R1470-6. PubMed ID: 8203622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II-induced renal responses in anesthetized rabbits: effects of N omega-nitro-L-arginine methyl ester and losartan.
    Adachi Y; Hashimoto K; Hisa H; Yoshida M; Suzuki-Kusaba M; Satoh S
    Eur J Pharmacol; 1996 Jul; 308(2):165-71. PubMed ID: 8840128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcitonin gene-related peptide reduces renal vascular resistance and modulates ET-1-induced vasoconstriction.
    Amuchastegui CS; Remuzzi G; Perico N
    Am J Physiol; 1994 Nov; 267(5 Pt 2):F839-44. PubMed ID: 7977788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II subtype AT1 receptor blockade prevents hypertension and renal insufficiency induced by chronic NO-synthase inhibition in rats.
    Hropot M; Langer KH; Wiemer G; Grötsch H; Linz W
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Mar; 367(3):312-7. PubMed ID: 12644905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
    Siragy HM; Carey RM
    J Clin Invest; 1997 Jul; 100(2):264-9. PubMed ID: 9218502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat.
    Takenaka T; Mitchell KD; Navar LG
    J Am Soc Nephrol; 1993 Oct; 4(4):1046-53. PubMed ID: 8286713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of ANG II receptor and its mRNA in normal rat by low-protein feeding.
    Benabe JE; Wang S; Wilcox JN; Martinez-Maldonado M
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F660-9. PubMed ID: 8238546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II blockade does not prevent renal effects of L-NAME in sodium-repleted humans.
    Montanari A; Tateo E; Fasoli E; Giberti D; Perinotto P; Novarini A; Dall'Aglio P
    Hypertension; 1997 Sep; 30(3 Pt 2):557-62. PubMed ID: 9322981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II: nitric oxide interaction and the distribution of blood flow.
    Sigmon DH; Beierwaltes WH
    Am J Physiol; 1993 Dec; 265(6 Pt 2):R1276-83. PubMed ID: 8285267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between nitric oxide and angiotensin II on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs.
    Egi Y; Matsumura Y; Miura A; Murata S; Morimoto S
    J Cardiovasc Pharmacol; 1995 Feb; 25(2):187-93. PubMed ID: 7752643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension.
    Ribeiro MO; Antunes E; de Nucci G; Lovisolo SM; Zatz R
    Hypertension; 1992 Sep; 20(3):298-303. PubMed ID: 1516948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal responses to AT1 blockade in angiotensin II-induced hypertensive rats.
    Wang CT; Zou LX; Navar LG
    J Am Soc Nephrol; 1997 Apr; 8(4):535-42. PubMed ID: 10495782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat.
    Bürgelová M; Kramer HJ; Teplan V; Velicková G; Vítko S; Heller J; Malý J; Cervenka L
    Kidney Blood Press Res; 2002; 25(4):202-10. PubMed ID: 12424421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat.
    Navarro-Cid J; Maeso R; Perez-Vizcaino F; Cachofeiro V; Ruilope LM; Tamargo J; Lahera V
    Hypertension; 1995 Dec; 26(6 Pt 2):1074-8. PubMed ID: 7498971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous vasoactive systems and the pressor effect of acute N omega-nitro-L-arginine methyl ester administration.
    Nafrialdi N; Jover B; Mimran A
    J Cardiovasc Pharmacol; 1994 May; 23(5):765-71. PubMed ID: 7521459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.