These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8023996)

  • 1. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of repolarization induced by a nonuniform shock field.
    Knisley SB; Afework Y; Li J; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1991 Jul; 14(7):1148-57. PubMed ID: 1715552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1973-9. PubMed ID: 2058729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane potentials during high voltage shocks in ischemic cardiac tissue.
    Holley LK; Knisley SB
    Pacing Clin Electrophysiol; 1997 Jan; 20(1 Pt 2):146-52. PubMed ID: 9121979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.
    Dillon SM
    Circ Res; 1991 Sep; 69(3):842-56. PubMed ID: 1873877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks.
    Neunlist M; Tung L
    Am J Physiol; 1997 Dec; 273(6):H2817-25. PubMed ID: 9435619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks.
    Clark DM; Pollard AE; Ideker RE; Knisley SB
    J Interv Card Electrophysiol; 1999 Jul; 3(2):109-20. PubMed ID: 10387137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High voltage shock induced cellular electrophysiological effects: transient refractoriness and bimodal changes in action potential duration.
    Li HG; Jones DL; Yee R; Klein GJ
    Pacing Clin Electrophysiol; 1995 Jun; 18(6):1225-35. PubMed ID: 7659576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between "extension of refractoriness" and probability of successful defibrillation.
    Tovar OH; Jones JL
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H1011-9. PubMed ID: 9124409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock-induced figure-of-eight reentry in the isolated rabbit heart.
    Banville I; Gray RA; Ideker RE; Smith WM
    Circ Res; 1999 Oct; 85(8):742-52. PubMed ID: 10576949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
    Nikolski VP; Sambelashvili AT; Krinsky VI; Efimov IR
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H412-8. PubMed ID: 14527941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts.
    Zhou X; Ideker RE; Blitchington TF; Smith WM; Knisley SB
    Circ Res; 1995 Sep; 77(3):593-602. PubMed ID: 7641329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurements of membrane time constant during defibrillation strength shocks.
    Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR
    Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.