These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8024018)

  • 21. Oxygen regulation of energy metabolism in isolated pig hearts: a near-IR spectroscopy study.
    Kupriyanov VV; Shaw RA; Xiang B; Mantsch H; Deslauriers R
    J Mol Cell Cardiol; 1997 Sep; 29(9):2431-9. PubMed ID: 9299366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of the chronically hypoxic young rabbit heart reperfused following no-flow ischemia.
    Uy RG; Ross-Ascuitto NT; Ascuitto RJ
    Pediatr Cardiol; 2006; 27(1):37-46. PubMed ID: 16391992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ratiometric intracellular calcium imaging in the isolated beating rat heart using indo-1 fluorescence.
    Eerbeek O; Mik EG; Zuurbier CJ; van 't Loo M; Donkersloot C; Ince C
    J Appl Physiol (1985); 2004 Dec; 97(6):2042-50. PubMed ID: 15208283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of tissue absorbance on NAD(P)H and Indo-1 fluorescence from perfused rabbit hearts.
    Fralix TA; Heineman FW; Balaban RS
    FEBS Lett; 1990 Mar; 262(2):287-92. PubMed ID: 2335209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of rate of left ventricular relaxation from chamber stiffness in rats.
    Momomura S; Iizuka M; Serizawa T; Sugimoto T
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1468-75. PubMed ID: 3202208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature of [Ca2+]i transients during ventricular fibrillation and quinidine treatment in perfused rat hearts.
    Kojima S; Wikman-Coffelt J; Wu ST; Parmley WW
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1473-84. PubMed ID: 8184925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of Na+-H+ exchange occurring during hypoxia in the genesis of reoxygenation-induced myocardial oedema.
    Inserte J; Garcia-Dorado D; Ruiz-Meana M; Solares J; Soler J
    J Mol Cell Cardiol; 1997 Apr; 29(4):1167-75. PubMed ID: 9160868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of neonatal hypoxia in the rat on inotropic stimulation of the adult heart.
    Rohlicek CV; Viau S; Trieu P; Hébert TE
    Cardiovasc Res; 2005 Mar; 65(4):861-8. PubMed ID: 15721866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiparameter analysis of the perfused rat heart: responses to ischemia, uncouplers and drugs.
    Fuchs J; Zimmer G; Bereiter-Hahn J
    Cell Biochem Funct; 1987 Oct; 5(4):245-53. PubMed ID: 3677324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of glucagon on cardiac cyclic nucleotides in the hypoxic heart.
    Busuttil RW; Paddock RJ; George WJ
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():461-73. PubMed ID: 176699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topographic dissociation between mitochondrial dysfunction and cell death during low-flow hypoxia in perfused rat liver.
    Suematsu M; Suzuki H; Ishii H; Kato S; Hamamatsu H; Miura S; Tsuchiya M
    Lab Invest; 1992 Oct; 67(4):434-42. PubMed ID: 1434527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats.
    Asemu G; Neckár J; Szárszoi O; Papousek F; Ostádal B; Kolar F
    Physiol Res; 2000; 49(5):597-606. PubMed ID: 11191364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury.
    Xie Y; Zhu WZ; Zhu Y; Chen L; Zhou ZN; Yang HT
    Life Sci; 2004 Dec; 76(5):559-72. PubMed ID: 15556168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing excitation waves inside cardiac muscle using transillumination.
    Baxter WT; Mironov SF; Zaitsev AV; Jalife J; Pertsov AM
    Biophys J; 2001 Jan; 80(1):516-30. PubMed ID: 11159422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen delivery in perfused rat kidney: NADH fluorescence and renal functional state.
    Franke H; Barlow CH; Chance B
    Am J Physiol; 1976 Oct; 231(4):1082-9. PubMed ID: 185909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of adaptation to periodic hypoxia on bioelectric activity of cardiomyocytes of isolated heart in ischemia and reperfusion].
    Vovk VI; Meerson FZ
    Biull Eksp Biol Med; 1991 Jun; 111(6):574-7. PubMed ID: 1893170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maps of optical action potentials and NADH fluorescence in intact working hearts.
    Salama G; Lombardi R; Elson J
    Am J Physiol; 1987 Feb; 252(2 Pt 2):H384-94. PubMed ID: 3812752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart.
    Montaigne D; Marechal X; Baccouch R; Modine T; Preau S; Zannis K; Marchetti P; Lancel S; Neviere R
    Toxicol Appl Pharmacol; 2010 May; 244(3):300-7. PubMed ID: 20096298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemodynamics and mitochondrial energy metabolism in right heart hypertrophy after acute hypoxic stress.
    Thürich T; Bereiter-Hahn J; Schneider M; Zimmer G
    Arzneimittelforschung; 1999 Mar; 49(3):212-20. PubMed ID: 10219464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of vitamin E and dihydrolipoic acid on cardiac energy and glutathione status under hypoxia-reoxygenation.
    Haramaki N; Assadnazari H; Zimmer G; Schepkin V; Packer L
    Biochem Mol Biol Int; 1995 Oct; 37(3):591-7. PubMed ID: 8595400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.