BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8024019)

  • 1. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium.
    Mohazzab KM; Kaminski PM; Wolin MS
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2568-72. PubMed ID: 8024019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle.
    Mohazzab KM; Wolin MS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L815-22. PubMed ID: 7810685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxidase.
    Kaminski PM; Wolin MS
    Microcirculation; 1994 Dec; 1(4):231-6. PubMed ID: 8790592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial-derived superoxide anions in pig coronary arteries: evidence from lucigenin chemiluminescence and histochemical techniques.
    Brandes RP; Barton M; Philippens KM; Schweitzer G; Mügge A
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):331-42. PubMed ID: 9147321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase.
    Takeshita S; Inoue N; Gao D; Rikitake Y; Kawashima S; Tawa R; Sakurai H; Yokoyama M
    J Atheroscler Thromb; 2000; 7(4):238-46. PubMed ID: 11521688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential role of NADH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses.
    Mohazzab KM; Fayngersh RP; Kaminski PM; Wolin MS
    Am J Physiol; 1995 Nov; 269(5 Pt 1):L637-44. PubMed ID: 7491983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide.
    Mohazzab-H KM; Kaminski PM; Fayngersh RP; Wolin MS
    Am J Physiol; 1996 Mar; 270(3 Pt 2):H1044-53. PubMed ID: 8780202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity.
    Souza HP; Souza LC; Anastacio VM; Pereira AC; Junqueira ML; Krieger JE; da Luz PL; Augusto O; Laurindo FR
    Free Radic Biol Med; 2000 Apr; 28(8):1232-42. PubMed ID: 10889453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of NO-elicited pulmonary artery relaxation and guanylate cyclase activation by NADH oxidase and SOD.
    Gupte SA; Rupawalla T; Mohazzab-H KM; Wolin MS
    Am J Physiol; 1999 May; 276(5):H1535-42. PubMed ID: 10330236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O2-dependent modulation of calf pulmonary artery tone by lactate: potential role of H2O2 and cGMP.
    Omar HA; Mohazzab KM; Mortelliti MP; Wolin MS
    Am J Physiol; 1993 Feb; 264(2 Pt 1):L141-5. PubMed ID: 8383445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle.
    Gao Q; Wolin MS
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H978-H989. PubMed ID: 18567707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine.
    Kugiyama K; Sugiyama S; Ogata N; Oka H; Doi H; Ota Y; Yasue H
    Atherosclerosis; 1999 Mar; 143(1):201-4. PubMed ID: 10208496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase.
    Storch J; Ferber E
    Anal Biochem; 1988 Mar; 169(2):262-7. PubMed ID: 2837920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM; Shah AM
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH oxidase activity of human xanthine oxidoreductase--generation of superoxide anion.
    Sanders SA; Eisenthal R; Harrison R
    Eur J Biochem; 1997 May; 245(3):541-8. PubMed ID: 9182988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells.
    Bayraktutan U; Draper N; Lang D; Shah AM
    Cardiovasc Res; 1998 Apr; 38(1):256-62. PubMed ID: 9683929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basal and stimulated release of the endothelium-derived relaxing factor from isolated pig coronary arteries does not interfere with the vascular release of superoxide.
    Brandes RP; Dwenger A; Mügge A
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Feb; 349(2):183-7. PubMed ID: 7513382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypercholesterolemia increases endothelial superoxide anion production.
    Ohara Y; Peterson TE; Harrison DG
    J Clin Invest; 1993 Jun; 91(6):2546-51. PubMed ID: 8390482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.