These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 8024489)
1. The effects of streptozotocin diabetes on salivary-mediated bacterial aggregation and adherence. Anderson LC; Yang SC; Xie H; Lamont RJ Arch Oral Biol; 1994 Apr; 39(4):261-9. PubMed ID: 8024489 [TBL] [Abstract][Full Text] [Related]
2. Monoclonal antibodies against a high-molecular-weight agglutinin block adherence to experimental pellicles on hydroxyapatite and aggregation of Streptococcus mutans. Carlén A; Olsson J J Dent Res; 1995 Apr; 74(4):1040-7. PubMed ID: 7782534 [TBL] [Abstract][Full Text] [Related]
3. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans. Carlén A; Olsson J; Ramberg P Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous measurement of the viability, aggregation, and live and dead adherence of Streptococcus crista, Streptococcus mutans and Actinobacillus actinomycetemcomitans in human saliva in relation to indices of caries, dental plaque and periodontal disease. Rudney JD; Staikov RK Arch Oral Biol; 2002 May; 47(5):347-59. PubMed ID: 12015215 [TBL] [Abstract][Full Text] [Related]
5. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience. Shimotoyodome A; Kobayashi H; Tokimitsu I; Hase T; Inoue T; Matsukubo T; Takaesu Y Caries Res; 2007; 41(3):212-8. PubMed ID: 17426402 [TBL] [Abstract][Full Text] [Related]
6. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. Carlén A; Bratt P; Stenudd C; Olsson J; Strömberg N J Dent Res; 1998 Jan; 77(1):81-90. PubMed ID: 9437403 [TBL] [Abstract][Full Text] [Related]
7. Saliva-mediated binding in vitro and prevalence in vivo of Streptococcus mutans. Carlen A; Olsson J; Borjesson AC Arch Oral Biol; 1996 Jan; 41(1):35-9. PubMed ID: 8833588 [TBL] [Abstract][Full Text] [Related]
8. Adsorbed salivary acidic proline-rich proteins contribute to the adhesion of Streptococcus mutans JBP to apatitic surfaces. Gibbons RJ; Hay DI J Dent Res; 1989 Sep; 68(9):1303-7. PubMed ID: 2550531 [TBL] [Abstract][Full Text] [Related]
9. Adhesion of Streptococcus mutans to salivary proteins in caries-free and caries-susceptible individuals. Castro P; Tovar JA; Jaramillo L Acta Odontol Latinoam; 2006; 19(2):59-66. PubMed ID: 17645212 [TBL] [Abstract][Full Text] [Related]
10. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Carlén A; Börjesson AC; Nikdel K; Olsson J Caries Res; 1998; 32(6):447-55. PubMed ID: 9745119 [TBL] [Abstract][Full Text] [Related]
11. Effects of chronic stimulation of salivary gland beta-adrenoceptors on saliva composition and caries development in the rat. Ryberg M; Johansson I; Ericson T; Mörnstad H; Henriksson R; Jönsson G; Sundström S J Oral Pathol Med; 1989 Oct; 18(9):529-32. PubMed ID: 2481738 [TBL] [Abstract][Full Text] [Related]
12. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Edgerton M; Lo SE; Scannapieco FA Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339 [TBL] [Abstract][Full Text] [Related]
13. Altered bacterial aggregation and adherence associated with changes in rat parotid-gland salivary proteins induced in vivo by beta-adrenergic stimulation. Kousvelari EE; Ciardi JE; Bowers MR Arch Oral Biol; 1988; 33(5):341-6. PubMed ID: 2847697 [TBL] [Abstract][Full Text] [Related]
15. Differential utilization of proteins in saliva from caries-active and caries-free subjects as growth substrates by plaque-forming streptococci. Cowman RA; Schaefer SJ; Fitzgerald RJ; Rosner D; Shklair IL; Walter RG J Dent Res; 1979 Oct; 58(10):2019-27. PubMed ID: 291630 [TBL] [Abstract][Full Text] [Related]
16. Characteristic differences between saliva-dependent aggregation and adhesion of streptococci. Rosan B; Malamud D; Appelbaum B; Golub E Infect Immun; 1982 Jan; 35(1):86-90. PubMed ID: 6274804 [TBL] [Abstract][Full Text] [Related]
17. Partial characterization of a human submandibular/sublingual salivary adhesion-promoting protein. Akintoye SO; Dasso M; Hay DI; Ganeshkumar N; Spielman AI Arch Oral Biol; 2002 May; 47(5):337-45. PubMed ID: 12015214 [TBL] [Abstract][Full Text] [Related]
18. The effect of propranolol on salivary gland function and dental caries development in young and aged rats. O'Connell AC; Van Wuyckhuyse BC; Pearson SK; Bowen WH Arch Oral Biol; 1993 Oct; 38(10):853-61. PubMed ID: 8279990 [TBL] [Abstract][Full Text] [Related]
19. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro. Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845 [TBL] [Abstract][Full Text] [Related]
20. Immunoglobulin A antibody activity to mutans streptococci in parotid, submandibular and whole saliva. Widerstrom L; Bratthall D; Hamberg K Oral Microbiol Immunol; 1992 Dec; 7(6):326-31. PubMed ID: 1299799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]