BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8026219)

  • 1. Neural network analysis of flow cytometric data for 40 marine phytoplankton species.
    Boddy L; Morris CW; Wilkins MF; Tarran GA; Burkill PH
    Cytometry; 1994 Apr; 15(4):283-93. PubMed ID: 8026219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoplankton monitoring by high performance flow cytometry: a successful approach?
    Rutten TP; Sandee B; Hofman AR
    Cytometry A; 2005 Mar; 64(1):16-26. PubMed ID: 15688354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shipboard analytical flow cytometry of oceanic ultraphytoplankton.
    Li WK
    Cytometry; 1989 Sep; 10(5):564-79. PubMed ID: 2776573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations.
    Frankel DS; Olson RJ; Frankel SL; Chisholm SW
    Cytometry; 1989 Sep; 10(5):540-50. PubMed ID: 2776570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid technique for classifying phytoplankton fluorescence spectra based on self-organizing maps.
    Aymerich IF; Piera J; Soria-Frisch A; Cros L
    Appl Spectrosc; 2009 Jun; 63(6):716-26. PubMed ID: 19531300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry.
    Olson RJ; Zettler ER; Anderson OK
    Cytometry; 1989 Sep; 10(5):636-43. PubMed ID: 2776580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data.
    Wilkins MF; Morris CW; Boddy L
    Comput Appl Biosci; 1994 Jun; 10(3):285-94. PubMed ID: 7922685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of neural networks to flow cytometry data analysis and real-time cell classification.
    Frankel DS; Frankel SL; Binder BJ; Vogt RF
    Cytometry; 1996 Apr; 23(4):290-302. PubMed ID: 8900472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method to preserve oceanic phytoplankton for flow cytometric analyses.
    Vaulot D; Courties C; Partensky F
    Cytometry; 1989 Sep; 10(5):629-35. PubMed ID: 2505987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonparametric discriminant analysis of phytoplankton species using data from analytical flow cytometry.
    Collins GS; Krzanowski WJ
    Cytometry; 2002 May; 48(1):26-33. PubMed ID: 12116378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network-based detection of esophageal intubation.
    León MA; Räsänen J; Mangar D
    Anesth Analg; 1994 Mar; 78(3):548-53. PubMed ID: 8109776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.
    Li WK
    Nature; 2002 Sep; 419(6903):154-7. PubMed ID: 12226662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and identification of mosquito species using artificial neural networks.
    Banerjee AK; Kiran K; Murty US; Venkateswarlu Ch
    Comput Biol Chem; 2008 Dec; 32(6):442-7. PubMed ID: 18838305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do phytoplankton communities evolve through a self-regulatory abundance-diversity relationship?
    Roy S
    Biosystems; 2009 Feb; 95(2):160-5. PubMed ID: 18996435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytometry data.
    Wilkins MF; Boddy L; Morris CW; Jonker R
    Comput Appl Biosci; 1996 Feb; 12(1):9-18. PubMed ID: 8670614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.
    Malkassian A; Nerini D; van Dijk MA; Thyssen M; Mante C; Gregori G
    Cytometry A; 2011 Apr; 79(4):263-75. PubMed ID: 21387542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of biogeographic classification schemes for conservation planning: application to New Zealand's coastal marine environment.
    Shears NT; Smith F; Babcock RC; Duffy CA; Villouta E
    Conserv Biol; 2008 Apr; 22(2):467-81. PubMed ID: 18294299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry.
    Devilla RA; Brown MT; Donkin M; Readman JW
    Aquat Toxicol; 2005 Jan; 71(1):25-38. PubMed ID: 15642629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.
    Busam S; McNabb M; Wackwitz A; Senevirathna W; Beggah S; Meer JR; Wells M; Breuer U; Harms H
    Anal Chem; 2007 Dec; 79(23):9107-14. PubMed ID: 17956147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural networks for visual field analysis: how do they compare with other algorithms?
    Lietman T; Eng J; Katz J; Quigley HA
    J Glaucoma; 1999 Feb; 8(1):77-80. PubMed ID: 10084278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.