These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8026480)
1. The (2R)-hydroxycarboxylate-viologen-oxidoreductase from Proteus vulgaris is a molybdenum-containing iron-sulphur protein. Trautwein T; Krauss F; Lottspeich F; Simon H Eur J Biochem; 1994 Jun; 222(3):1025-32. PubMed ID: 8026480 [TBL] [Abstract][Full Text] [Related]
2. Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor. Hanlon SP; Toh TH; Solomon PS; Holt RA; McEwan AG Eur J Biochem; 1996 Jul; 239(2):391-6. PubMed ID: 8706745 [TBL] [Abstract][Full Text] [Related]
3. Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. McEwan AG; Ferguson SJ; Jackson JB Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):305-7. PubMed ID: 2001248 [TBL] [Abstract][Full Text] [Related]
4. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Yokoyama K; Leimkühler S Biochim Biophys Acta; 2015 Jun; 1853(6):1335-49. PubMed ID: 25268953 [TBL] [Abstract][Full Text] [Related]
5. One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. Reichenbecher W; Rüdiger A; Kroneck PM; Schink B Eur J Biochem; 1996 Apr; 237(2):406-13. PubMed ID: 8647079 [TBL] [Abstract][Full Text] [Related]
6. Microbial metabolism of quinoline and related compounds. XVI. Quinaldine oxidoreductase from Arthrobacter spec. Rü 61a: a molybdenum-containing enzyme catalysing the hydroxylation at C-4 of the heterocycle. de Beyer A; Lingens F Biol Chem Hoppe Seyler; 1993 Feb; 374(2):101-9. PubMed ID: 8471177 [TBL] [Abstract][Full Text] [Related]
7. Microbial metabolism of quinoline and related compounds. VII. Quinoline oxidoreductase from Pseudomonas putida: a molybdenum-containing enzyme. Bauder R; Tshisuaka B; Lingens F Biol Chem Hoppe Seyler; 1990 Dec; 371(12):1137-44. PubMed ID: 2090161 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Solomon PS; Lane I; Hanson GR; McEwan AG Eur J Biochem; 1997 May; 246(1):200-3. PubMed ID: 9210484 [TBL] [Abstract][Full Text] [Related]
9. Molybdenum-pterin complexes: a functional and structural model for the binding site in the enzyme dimethyl sulfoxide reductase. Fischer B; Schmalle H; Dubler E; Viscontini M Adv Exp Med Biol; 1993; 338():369-72. PubMed ID: 8304140 [No Abstract] [Full Text] [Related]
10. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker C; Schindelin H; Rees DC Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907 [TBL] [Abstract][Full Text] [Related]
11. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Karrasch M; Börner G; Enssle M; Thauer RK Eur J Biochem; 1990 Dec; 194(2):367-72. PubMed ID: 2125267 [TBL] [Abstract][Full Text] [Related]
12. Microbial metabolism of quinoline and related compounds. XV. Quinoline-4-carboxylic acid oxidoreductase from Agrobacterium spec.1B: a molybdenum-containing enzyme. Bauer G; Lingens F Biol Chem Hoppe Seyler; 1992 Aug; 373(8):699-705. PubMed ID: 1418685 [TBL] [Abstract][Full Text] [Related]
14. Microbial metabolism of quinoline and related compounds. XVIII. Purification and some properties of the molybdenum- and iron-containing quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1. Fetzner S; Lingens F Biol Chem Hoppe Seyler; 1993 Jun; 374(6):363-76. PubMed ID: 8357532 [TBL] [Abstract][Full Text] [Related]
15. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. Weiner JH; MacIsaac DP; Bishop RE; Bilous PT J Bacteriol; 1988 Apr; 170(4):1505-10. PubMed ID: 3280546 [TBL] [Abstract][Full Text] [Related]
16. Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. White H; Feicht R; Huber C; Lottspeich F; Simon H Biol Chem Hoppe Seyler; 1991 Nov; 372(11):999-1005. PubMed ID: 1793519 [TBL] [Abstract][Full Text] [Related]
17. Microbial metabolism of quinoline and related compounds. XX. Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 compared to other procaryotic molybdenum-containing hydroxylases. Sauter M; Tshisuaka B; Fetzner S; Lingens F Biol Chem Hoppe Seyler; 1993 Nov; 374(11):1037-46. PubMed ID: 8292263 [TBL] [Abstract][Full Text] [Related]
18. The tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum and its complex with a viologen-accepting NADPH oxidoreductase. Strobl G; Feicht R; White H; Lottspeich F; Simon H Biol Chem Hoppe Seyler; 1992 Mar; 373(3):123-32. PubMed ID: 1586452 [TBL] [Abstract][Full Text] [Related]
19. The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide. Hochheimer A; Schmitz RA; Thauer RK; Hedderich R Eur J Biochem; 1995 Dec; 234(3):910-20. PubMed ID: 8575452 [TBL] [Abstract][Full Text] [Related]
20. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications. Canne C; Lowe DJ; Fetzner S; Adams B; Smith AT; Kappl R; Bray RC; Hüttermann J Biochemistry; 1999 Oct; 38(42):14077-87. PubMed ID: 10529255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]