BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8026507)

  • 1. Structural changes of high-density-lipoprotein apolipoproteins following incubation with human polymorphonuclear cells.
    Cogny A; Paul JL; Atger V; Soni T; Moatti N
    Eur J Biochem; 1994 Jun; 222(3):965-73. PubMed ID: 8026507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density lipoprotein 3 physicochemical modifications induced by interaction with human polymorphonuclear leucocytes affect their ability to remove cholesterol from cells.
    Cogny A; Atger V; Paul JL; Soni T; Moatti N
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):285-92. PubMed ID: 8660296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro proteolysis of human plasma low density lipoproteins by an elastase released from human blood polymorphonuclear cells.
    Polacek D; Byrne RE; Fless GM; Scanu AM
    J Biol Chem; 1986 Feb; 261(5):2057-63. PubMed ID: 3632977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative modification of high-density lipoprotein 3 induced by human polymorphonuclear neutrophils. Protective effect of pentoxifylline.
    Cogny A; Paul JL; Surbled B; Atger V; Lenoble M; Moatti N
    Eur J Biochem; 1999 Jan; 259(1-2):32-9. PubMed ID: 9914472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzyme that cleaves apolipoprotein A-II upon in vitro incubation of human plasma high-density lipoprotein-3 with blood polymorphonuclear cells is an elastase.
    Byrne RE; Polacek D; Gordon JI; Scanu AM
    J Biol Chem; 1984 Dec; 259(23):14537-43. PubMed ID: 6438100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between high-density lipoprotein subpopulations in apo B-free and abetalipoproteinemic plasma.
    Cheung MC; Wolf AC; Illingworth DR
    Biochim Biophys Acta; 1992 Oct; 1128(2-3):244-9. PubMed ID: 1420297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors controlling the release from human blood polymorphonuclear cells in vitro of a proteolytic activity directed against apolipoprotein A-II.
    Polacek D; Byrne RE; Burrous M; Scanu AM
    J Biol Chem; 1984 Dec; 259(23):14531-6. PubMed ID: 6094562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of HDL-apolipoproteins to the inhibition of low density lipoprotein oxidation and lipid accumulation in macrophages.
    Lin KY; Chen YL; Shih CC; Pan JP; Chan WE; Chiang AN
    J Cell Biochem; 2002; 86(2):258-67. PubMed ID: 12111995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphonuclear cells isolated from human peripheral blood cleave lipoprotein(a) and apolipoprotein(a) at multiple interkringle sites via the enzyme elastase. Generation of mini-Lp(a) particles and apo(a) fragments.
    Edelstein C; Italia JA; Scanu AM
    J Biol Chem; 1997 Apr; 272(17):11079-87. PubMed ID: 9111002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of high-density lipoprotein HDL3 leads to exposure of apo-AI and apo-AII epitopes and to formation of aldehyde protein adducts, and influences binding of oxidized low-density lipoprotein to type I and type III collagen in vitro1.
    Greilberger J; Jürgens G
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):185-91. PubMed ID: 9512478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hypolipidemic drugs on the expression of genes involved in high density lipoprotein metabolism in the rat.
    Staels B; Van Tol A; Fruchart JC; Auwerx J
    Isr J Med Sci; 1996 Jun; 32(6):490-8. PubMed ID: 8682657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal helix of human apolipoprotein AII promotes the fusion of unilamellar liposomes and displaces apolipoprotein AI from high-density lipoproteins.
    Lambert G; Decout A; Vanloo B; Rouy D; Duverger N; Kalopissis A; Vandekerckhove J; Chambaz J; Brasseur R; Rosseneu M
    Eur J Biochem; 1998 Apr; 253(1):328-38. PubMed ID: 9578492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of action of gemfibrozil on lipoprotein metabolism.
    Saku K; Gartside PS; Hynd BA; Kashyap ML
    J Clin Invest; 1985 May; 75(5):1702-12. PubMed ID: 3923042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of cholesterol concentrations in low-density lipoprotein, high-density lipoprotein, and high-density lipoprotein subfractions, and of apolipoproteins AI and AII, with coronary stenosis and left ventricular function.
    Kempen HJ; van Gent CM; Buytenhek R; Buis B
    J Lab Clin Med; 1987 Jan; 109(1):19-26. PubMed ID: 3098880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protective effects of HDL and its constituents against neutrophil respiratory burst activation by hypochlorite-oxidized LDL.
    Kopprasch S; Pietzsch J; Graessler J
    Mol Cell Biochem; 2004 Mar; 258(1-2):121-7. PubMed ID: 15030176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical changes in human high-density lipoproteins (HDL) oxidized by gamma radiolysis-generated oxyradicals. Effect on their cholesterol effluxing capacity.
    Bonnefont-Rousselot D; Motta C; Khalil AO; Sola R; La Ville AE; Delattre J; Gardès-Albert M
    Biochim Biophys Acta; 1995 Mar; 1255(1):23-30. PubMed ID: 7893734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Familial apolipoprotein AI and apolipoprotein CIII deficiency. Subclass distribution, composition, and morphology of lipoproteins in a disorder associated with premature atherosclerosis.
    Forte TM; Nichols AV; Krauss RM; Norum RA
    J Clin Invest; 1984 Nov; 74(5):1601-13. PubMed ID: 6501564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma lipids, lipoproteins and apolipoproteins AI, AII, and B in renal transplanted children: what risk for accelerated atherosclerosis?
    Goldstein S; Duhamel G; Laudat MH; Berthelier M; Hervy C; Tete MJ; Broyer M
    Nephron; 1984; 38(2):87-92. PubMed ID: 6433214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apolipoprotein-lipid association in oxidatively modified HDL and LDL.
    Shoukry MI; Gong EL; Nichols AV
    Biochim Biophys Acta; 1994 Jan; 1210(3):355-60. PubMed ID: 8305491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of the carboxyl-terminal domain of apo AI with apo AII sequences restores the potential of HDL to reduce the progression of atherosclerosis in apo E knockout mice.
    Holvoet P; Danloy S; Deridder E; Lox M; Bernar H; Dhoest A; Collen D
    J Clin Invest; 1998 Jul; 102(2):379-85. PubMed ID: 9664079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.