These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8026580)

  • 21. Rhodobacter sphaeroides: complexity in chemotactic signalling.
    Porter SL; Wadhams GH; Armitage JP
    Trends Microbiol; 2008 Jun; 16(6):251-60. PubMed ID: 18440816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real time computer tracking of free-swimming and tethered rotating cells.
    Poole PS; Sinclair DR; Armitage JP
    Anal Biochem; 1988 Nov; 175(1):52-8. PubMed ID: 3149876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Master Regulators of the Fla1 and Fla2 Flagella of Rhodobacter sphaeroides Control the Expression of Their Cognate CheY Proteins.
    Hernandez-Valle J; Domenzain C; de la Mora J; Poggio S; Dreyfus G; Camarena L
    J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 27956523
    [No Abstract]   [Full Text] [Related]  

  • 24. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system.
    McGlynn P; Hunter CN; Jones MR
    FEBS Lett; 1994 Aug; 349(3):349-53. PubMed ID: 8050595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane potential changes during chemotaxis of Rhodopseudomonas sphaeroides.
    Armitage JP; Evans MC
    FEBS Lett; 1979 Jun; 102(1):143-6. PubMed ID: 313342
    [No Abstract]   [Full Text] [Related]  

  • 28. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.
    Yue H; Zhao C; Li K; Yang S
    J Basic Microbiol; 2015 Nov; 55(11):1319-25. PubMed ID: 26193456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The incorporation of reaction centres into membranes from a bacteriochlorophyll-less mutant of Rhodopseudomonas sphaeroides.
    Hunter CN; Jones OT
    Biochim Biophys Acta; 1979 Feb; 545(2):325-38. PubMed ID: 310690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli modulates its motor speed on sensing an attractant.
    Karmakar R; Naaz F; Tirumkudulu MS; Venkatesh KV
    Arch Microbiol; 2016 Oct; 198(8):827-33. PubMed ID: 27318664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The N terminus of FliM is essential to promote flagellar rotation in Rhodobacter sphaeroides.
    Poggio S; Osorio A; Corkidi G; Dreyfus G; Camarena L
    J Bacteriol; 2001 May; 183(10):3142-8. PubMed ID: 11325943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides.
    Williams JC; Alden RG; Murchison HA; Peloquin JM; Woodbury NW; Allen JP
    Biochemistry; 1992 Nov; 31(45):11029-37. PubMed ID: 1445841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.
    Chernova AA; Armitage JP; Packer HL; Maini PK
    Biosystems; 2003 Sep; 71(1-2):51-9. PubMed ID: 14568206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Shah DS; Porter SL; Mantotta JC; Craig TJ; Verdult PH; Jones H; Armitage JP
    J Bacteriol; 2001 Dec; 183(24):7135-44. PubMed ID: 11717272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis.
    Hamadeh A; Ingalls B; Sontag E
    J R Soc Interface; 2013 Mar; 10(80):20120935. PubMed ID: 23293140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative agreement between the values for the light-induced delta pH in Rhodopseudomonas sphaeroides measured with automated follow-dialysis and 31P NMR.
    Nicolay K; Lolkema J; Hellingwerf KJ; Kaptein R; Konings WN
    FEBS Lett; 1981 Jan; 123(2):319-23. PubMed ID: 6971766
    [No Abstract]   [Full Text] [Related]  

  • 38. The kinetics of flash-induced electron flow in bacteriochlorophyll-less membranes of Rhodopseudomonas sphaeroides reconstituted with reaction centres.
    Hunter CN; Jones OT
    Biochim Biophys Acta; 1979 Feb; 545(2):339-51. PubMed ID: 216400
    [No Abstract]   [Full Text] [Related]  

  • 39. Investigation of the electron transfer reactions and redox characteristics of photoactive bacteriochlorophyll in Rhodobacter sphaeroides reaction centers modified by D2O and cryoprotectants.
    Krasilnikov PM; Gorokhov VV; Goryacheva EA; Knox PP; Pashchenko VZ; Rubin AB
    Membr Cell Biol; 2000; 14(3):343-56. PubMed ID: 11368495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal chemotactic responses in stochastic environments.
    Godány M; Khatri BS; Goldstein RA
    PLoS One; 2017; 12(6):e0179111. PubMed ID: 28644830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.