These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 802681)
1. Yeast super-suppressors are altered tRNAs capable of translating a nonsense codon in vitro. Capecchi MR; Hughes SH; Wahl GM Cell; 1975 Nov; 6(3):269-77. PubMed ID: 802681 [TBL] [Abstract][Full Text] [Related]
2. Yeast suppressors of UAA and UAG nonsense codons work efficiently in vitro via tRNA. Gesteland RF; Wolfner M; Grisafi P; Fink G; Botstein D; Roth JR Cell; 1976 Mar; 7(3):381-90. PubMed ID: 947546 [TBL] [Abstract][Full Text] [Related]
3. An homologous in vitro assay for yeast nonsense suppressors. Tuite MF; Cox BS; McLaughlin CS J Biol Chem; 1981 Jul; 256(14):7298-304. PubMed ID: 7019207 [TBL] [Abstract][Full Text] [Related]
4. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Rydén SM; Isaksson LA Mol Gen Genet; 1984; 193(1):38-45. PubMed ID: 6419024 [TBL] [Abstract][Full Text] [Related]
5. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650 [TBL] [Abstract][Full Text] [Related]
6. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Lee CP; RajBhandary UL Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051 [TBL] [Abstract][Full Text] [Related]
7. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. Bossi L J Mol Biol; 1983 Feb; 164(1):73-87. PubMed ID: 6188841 [TBL] [Abstract][Full Text] [Related]
8. Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain. Nilsson M; Rydén-Aulin M Biochim Biophys Acta; 2003 May; 1627(1):1-6. PubMed ID: 12759186 [TBL] [Abstract][Full Text] [Related]
9. First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Lin JP; Aker M; Sitney KC; Mortimer RK Gene; 1986; 49(3):383-8. PubMed ID: 3552889 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the supE44 mutation of Escherichia coli is an amber suppressor allele of glnX and that it also suppresses ochre and opal nonsense mutations. Singaravelan B; Roshini BR; Munavar MH J Bacteriol; 2010 Nov; 192(22):6039-44. PubMed ID: 20833812 [TBL] [Abstract][Full Text] [Related]
11. Release factor competition is equivalent at strong and weakly suppressed nonsense codons. Martin R; Hearn M; Jenny P; Gallant J Mol Gen Genet; 1988 Jul; 213(1):144-9. PubMed ID: 3065609 [TBL] [Abstract][Full Text] [Related]
12. Nonsense suppression in archaea. Bhattacharya A; Köhrer C; Mandal D; RajBhandary UL Proc Natl Acad Sci U S A; 2015 May; 112(19):6015-20. PubMed ID: 25918386 [TBL] [Abstract][Full Text] [Related]
13. Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Capone JP; Sedivy JM; Sharp PA; RajBhandary UL Mol Cell Biol; 1986 Sep; 6(9):3059-67. PubMed ID: 3023959 [TBL] [Abstract][Full Text] [Related]
14. In vitro nonsense suppression in [psi+] and [psi-] cell-free lysates of Saccharomyces cerevisiae. Tuite MF; Cox BS; McLaughlin CS Proc Natl Acad Sci U S A; 1983 May; 80(10):2824-8. PubMed ID: 6344070 [TBL] [Abstract][Full Text] [Related]
15. The 3' codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells. Phillips-Jones MK; Watson FJ; Martin R J Mol Biol; 1993 Sep; 233(1):1-6. PubMed ID: 8377179 [TBL] [Abstract][Full Text] [Related]
16. Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae. Edelman I; Culbertson MR EMBO J; 1991 Jun; 10(6):1481-91. PubMed ID: 2026145 [TBL] [Abstract][Full Text] [Related]
17. Efficient translation of the UAG termination codon in Candida species. Santos M; Colthurst DR; Wills N; McLaughlin CS; Tuite MF Curr Genet; 1990 Jun; 17(6):487-91. PubMed ID: 2202525 [TBL] [Abstract][Full Text] [Related]
18. Replacement of anticodon loop nucleotides to produce functional tRNAs: amber suppressors derived from yeast tRNAPhe. Bruce AG; Atkins JF; Wills N; Uhlenbeck O; Gesteland RF Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7127-31. PubMed ID: 6961400 [TBL] [Abstract][Full Text] [Related]
19. Translational nonsense codon suppression as indicator for functional pre-tRNA splicing in transformed Arabidopsis hypocotyl-derived calli. Akama K; Beier H Nucleic Acids Res; 2003 Feb; 31(4):1197-207. PubMed ID: 12582239 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system. Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]