These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8026853)

  • 1. Electronics for a high temperature superconducting receiver system for magnetic resonance microimaging.
    Black RD; Roemer PB; Mueller OM
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):195-7. PubMed ID: 8026853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting receiver coils for sodium magnetic resonance imaging.
    Miller JR; Zhang K; Ma QY; Mun IK; Jung KJ; Katz J; Face DW; Kountz DJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1197-9. PubMed ID: 9214839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of large-size superconducting coil in 0.21T MRI system.
    Lee KH; Cheng MC; Chan KC; Wong KK; Yeung SS; Lee KC; Ma QY; Yang ES
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2024-30. PubMed ID: 15536904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient coil design using Bi-2223 high temperature superconducting tape for magnetic resonance imaging.
    Yuan J; Shen GX
    Med Eng Phys; 2007 May; 29(4):442-8. PubMed ID: 16875861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons between the 35 mm quadrature surface resonator at 300 K and the 40 mm high-temperature superconducting surface resonator at 77 K in a 3T MRI imager.
    Song M; Chen JH; Chen J; Lin IT
    PLoS One; 2015; 10(3):e0118892. PubMed ID: 25812124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for matching high-temperature superconductor resonators used for NMR signal pickup at 400 MHz.
    Suddarth S
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1061-6. PubMed ID: 9691581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast recovery, high sensitivity NMR probe and preamplifier for low frequencies.
    Hoult DI
    Rev Sci Instrum; 1979 Feb; 50(2):193. PubMed ID: 18699468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner.
    Poirier-Quinot M; Ginefri JC; Girard O; Robert P; Darrasse L
    Magn Reson Med; 2008 Oct; 60(4):917-27. PubMed ID: 18816812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A temperature-stable cryo-system for high-temperature superconducting MR in-vivo imaging.
    Lin IT; Yang HC; Chen JH
    PLoS One; 2013; 8(4):e61958. PubMed ID: 23637936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.
    Yanagisawa Y; Nakagome H; Tennmei K; Hamada M; Yoshikawa M; Otsuka A; Hosono M; Kiyoshi T; Takahashi M; Yamazaki T; Maeda H
    J Magn Reson; 2010 Apr; 203(2):274-82. PubMed ID: 20149698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole body screening using high-temperature superconducting MR volume resonators: mice studies.
    Lin IT; Yang HC; Chen JH
    PLoS One; 2012; 7(4):e33207. PubMed ID: 22493666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin film high temperature superconducting RF coils for low field MRI.
    van Heteren JG; James TW; Bourne LC
    Magn Reson Med; 1994 Sep; 32(3):396-400. PubMed ID: 7984072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-temperature superconducting surface coil for in vivo microimaging of the human skin.
    Ginefri JC; Darrasse L; Crozat P
    Magn Reson Med; 2001 Mar; 45(3):376-82. PubMed ID: 11241693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing MRI signal-to-noise ratio for quadrature unmatched RF coils: two preamplifiers are better than one.
    Sorgenfrei BL; Edelstein WA
    Magn Reson Med; 1996 Jul; 36(1):104-10. PubMed ID: 8795028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.