BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8027101)

  • 1. Stabilization of pericardial tissue by dye-mediated photooxidation.
    Moore MA; Bohachevsky IK; Cheung DT; Boyan BD; Chen WM; Bickers RR; McIlroy BK
    J Biomed Mater Res; 1994 May; 28(5):611-8. PubMed ID: 8027101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of physical and chemical agents on photooxidation of porcine pericardial collagen.
    Koźma EM; Wisowski G; Jura-Półtorak A; Olczyk P; Olczyk K; Nawrat Z
    Biomed Mater Eng; 2005; 15(3):137-44. PubMed ID: 15911995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biostability and calcification resistance of valved bovine jugular veins stabilized by dye-mediated photooxidation].
    Li S; Hu S; Zhou J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):754-8. PubMed ID: 16156266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and immunologic properties of pericardial tissue stabilized by dye-mediated photooxidation.
    Moore MA; Phillips RE
    J Heart Valve Dis; 1997 May; 6(3):307-15. PubMed ID: 9183731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of bovine tissues by dye-mediated photooxidation.
    McIlroy BK; Robinson MD; Chen WM; Moore MA
    J Heart Valve Dis; 1997 Jul; 6(4):416-23. PubMed ID: 9263875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Histomorphologic properties of bovine jugular vein conduit treated withdye-mediated photooxidation following decellularization].
    Li W; Yang LJ; Wu ZS
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Jun; 33(6):500-6. PubMed ID: 18599997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphologic and physiochemical properties of bovine jugular conduit stabilized by dye-mediated poto-oxidation].
    Feng YG; Wu ZS; Hu JG; Hu TH; Zhang JC; Xu ZJ; Wang H; Ma ZX
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Aug; 29(4):429-31. PubMed ID: 16134596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Crosslinking bovine pericardial bioprosthetic heart valves by phthalocyanine sensitized photooxidation reaction].
    Lin L; Tang YW; Liang Q; Zhou JY; Cui JW; Hu SS; Zhang FS
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Dec; 25(6):671-5. PubMed ID: 14714309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shrinkage temperature versus protein extraction as a measure of stabilization of photooxidized tissue.
    Moore MA; Chen WM; Phillips RE; Bohachevsky IK; McIlroy BK
    J Biomed Mater Res; 1996 Oct; 32(2):209-14. PubMed ID: 8884497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium.
    Schoen FJ
    J Heart Valve Dis; 1998 Mar; 7(2):174-9. PubMed ID: 9587858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslink formation in porcine valves stabilized by dye-mediated photooxidation.
    Adams AK; Talman EA; Campbell L; McIlroy BK; Moore MA
    J Biomed Mater Res; 2001 Dec; 57(4):582-7. PubMed ID: 11553889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium.
    Petite H; Rault I; Huc A; Menasche P; Herbage D
    J Biomed Mater Res; 1990 Feb; 24(2):179-87. PubMed ID: 2109750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical characterization of decellularized and cross-linked bovine pericardium.
    Oswal D; Korossis S; Mirsadraee S; Wilcox H; Watterson K; Fisher J; Ingham E
    J Heart Valve Dis; 2007 Mar; 16(2):165-74. PubMed ID: 17484467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds.
    Lü WD; Zhang M; Wu ZS; Hu TH
    Interact Cardiovasc Thorac Surg; 2009 Mar; 8(3):301-5. PubMed ID: 19074454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-enhanced glutaraldehyde crosslinking of collagenous biomaterials.
    Simionescu A; Simionescu D; Deac R
    J Biomed Mater Res; 1991 Dec; 25(12):1495-505. PubMed ID: 1794997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification process for glutaraldehyde-treated bovine pericardium: biological, chemical and mechanical characterization.
    Stacchino C; Bona G; Bonetti F; Rinaldi S; Della Ciana L; Grignani A
    J Heart Valve Dis; 1998 Mar; 7(2):190-4. PubMed ID: 9587860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications on collagen structures promoted by 1,4-dioxane improve thermal and biological properties of bovine pericardium as a biomaterial.
    Forti FL; Goissis G; Plepis AM
    J Biomater Appl; 2006 Jan; 20(3):267-85. PubMed ID: 16364966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials.
    Mirnajafi A; Raymer J; Scott MJ; Sacks MS
    Biomaterials; 2005 Mar; 26(7):795-804. PubMed ID: 15350785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation of the degradation behavior of different modified bovine pericardial in vitro].
    Wei Q; Wan C; Yao H; Li T; Xiong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):214-8. PubMed ID: 12856582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lack of transformation of the collagen substratum in collagen lattice cultures].
    Gillery P; Bellon G; Borel JP
    C R Acad Sci III; 1987; 305(6):217-20. PubMed ID: 3113682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.