BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8027189)

  • 1. G-protein ligands inhibit in vitro reactions of vacuole inheritance.
    Haas A; Conradt B; Wickner W
    J Cell Biol; 1994 Jul; 126(1):87-97. PubMed ID: 8027189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro.
    Conradt B; Haas A; Wickner W
    J Cell Biol; 1994 Jul; 126(1):99-110. PubMed ID: 8027190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance.
    Haas A; Scheglmann D; Lazar T; Gallwitz D; Wickner W
    EMBO J; 1995 Nov; 14(21):5258-70. PubMed ID: 7489715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae.
    Conradt B; Shaw J; Vida T; Emr S; Wickner W
    J Cell Biol; 1992 Dec; 119(6):1469-79. PubMed ID: 1334958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF).
    Haas A; Wickner W
    EMBO J; 1996 Jul; 15(13):3296-305. PubMed ID: 8670830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex.
    LaGrassa TJ; Ungermann C
    J Cell Biol; 2005 Jan; 168(3):401-14. PubMed ID: 15684030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuole segregation in the Saccharomyces cerevisiae vac2-1 mutant: structural and biochemical quantification of the segregation defect and formation of new vacuoles.
    Gomes De Mesquita DS; Shaw J; Grimbergen JA; Buys MA; Dewi L; Woldringh CL
    Yeast; 1997 Sep; 13(11):999-1008. PubMed ID: 9290204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance.
    Xu Z; Mayer A; Muller E; Wickner W
    J Cell Biol; 1997 Jan; 136(2):299-306. PubMed ID: 9015301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A truncated form of the Pho80 cyclin of Saccharomyces cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance.
    Nicolson T; Conradt B; Wickner W
    J Bacteriol; 1996 Jul; 178(14):4047-51. PubMed ID: 8763930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion.
    Wurmser AE; Sato TK; Emr SD
    J Cell Biol; 2000 Oct; 151(3):551-62. PubMed ID: 11062257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol.
    te Welscher YM; Jones L; van Leeuwen MR; Dijksterhuis J; de Kruijff B; Eitzen G; Breukink E
    Antimicrob Agents Chemother; 2010 Jun; 54(6):2618-25. PubMed ID: 20385867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae.
    Xu Z; Wickner W
    J Cell Biol; 1996 Mar; 132(5):787-94. PubMed ID: 8603912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.
    Michaillat L; Baars TL; Mayer A
    Mol Biol Cell; 2012 Mar; 23(5):881-95. PubMed ID: 22238359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion.
    Qiu QS; Fratti RA
    J Cell Sci; 2010 Oct; 123(Pt 19):3266-75. PubMed ID: 20826459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion.
    Price A; Wickner W; Ungermann C
    J Cell Biol; 2000 Mar; 148(6):1223-29. PubMed ID: 10725335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential action of two GTPases to promote vacuole docking and fusion.
    Eitzen G; Will E; Gallwitz D; Haas A; Wickner W
    EMBO J; 2000 Dec; 19(24):6713-20. PubMed ID: 11118206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF).
    Mayer A; Wickner W
    J Cell Biol; 1997 Jan; 136(2):307-17. PubMed ID: 9015302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling of organelle-bound actin is required for yeast vacuole fusion.
    Eitzen G; Wang L; Thorngren N; Wickner W
    J Cell Biol; 2002 Aug; 158(4):669-79. PubMed ID: 12177043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdc42p functions at the docking stage of yeast vacuole membrane fusion.
    Müller O; Johnson DI; Mayer A
    EMBO J; 2001 Oct; 20(20):5657-65. PubMed ID: 11598009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking.
    Eitzen G; Thorngren N; Wickner W
    EMBO J; 2001 Oct; 20(20):5650-6. PubMed ID: 11598008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.