These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8028000)

  • 1. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies.
    Mark AE; van Gunsteren WF
    J Mol Biol; 1994 Jul; 240(2):167-76. PubMed ID: 8028000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin.
    Olsson MH; Hong G; Warshel A
    J Am Chem Soc; 2003 Apr; 125(17):5025-39. PubMed ID: 12708852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy simulations: the meaning of the individual contributions from a component analysis.
    Boresch S; Archontis G; Karplus M
    Proteins; 1994 Sep; 20(1):25-33. PubMed ID: 7824520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the redox potential of the protein azurin and some mutants.
    van den Bosch M; Swart M; Snijders JG; Berendsen HJ; Mark AE; Oostenbrink C; van Gunsteren WF; Canters GW
    Chembiochem; 2005 Apr; 6(4):738-46. PubMed ID: 15747387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The meaning of component analysis: decomposition of the free energy in terms of specific interactions.
    Boresch S; Karplus M
    J Mol Biol; 1995 Dec; 254(5):801-7. PubMed ID: 7500351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the decomposition of free energies.
    Brady GP; Szabo A; Sharp KA
    J Mol Biol; 1996 Oct; 263(2):123-5. PubMed ID: 8913295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of sequence-specific protein-DNA association: computational analysis of integrase Tn916 binding to its target DNA.
    Gorfe AA; Jelesarov I
    Biochemistry; 2003 Oct; 42(40):11568-76. PubMed ID: 14529266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition.
    Zoete V; Meuwly M; Karplus M
    Proteins; 2005 Oct; 61(1):79-93. PubMed ID: 16080143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: application to the TCR-p-MHC complex.
    Zoete V; Michielin O
    Proteins; 2007 Jun; 67(4):1026-47. PubMed ID: 17377991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy perturbation and molecular dynamics calculations of copper binding to azurin.
    Pappalardo M; Milardi D; Grasso DM; La Rosa C
    J Comput Chem; 2003 Apr; 24(6):779-85. PubMed ID: 12666170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions.
    Keskin O; Bahar I; Badretdinov AY; Ptitsyn OB; Jernigan RL
    Protein Sci; 1998 Dec; 7(12):2578-86. PubMed ID: 9865952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the free energy landscape of the FBP28WW domain using multiple techniques.
    Periole X; Allen LR; Tamiola K; Mark AE; Paci E
    J Comput Chem; 2009 May; 30(7):1059-68. PubMed ID: 18942730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of redox properties: understanding short- and long-range effects in rubredoxin.
    Sulpizi M; Raugei S; VandeVondele J; Carloni P; Sprik M
    J Phys Chem B; 2007 Apr; 111(15):3969-76. PubMed ID: 17388622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical kinetic study of the reactions of cycloalkylperoxy radicals.
    Sirjean B; Glaude PA; Ruiz-Lòpez MF; Fournet R
    J Phys Chem A; 2009 Jun; 113(25):6924-35. PubMed ID: 19476363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin.
    Jeuken LJ; Ubbink M; Bitter JH; van Vliet P; Meyer-Klaucke W; Canters GW
    J Mol Biol; 2000 Jun; 299(3):737-55. PubMed ID: 10835281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures.
    Chelli R; Gervasio FL; Procacci P; Schettino V
    Proteins; 2004 Apr; 55(1):139-51. PubMed ID: 14997548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.