These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8028355)

  • 1. Mechanisms of brain injury with deep hypothermic circulatory arrest and protective effects of coenzyme Q10.
    Ren Z; Ding W; Su Z; Gu X; Huang H; Liu J; Yan Q; Zhang W; Yu X
    J Thorac Cardiovasc Surg; 1994 Jul; 108(1):126-33. PubMed ID: 8028355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of coenzyme Q10 added to a potassium cardioplegic solution for myocardial protection during ischemic cardiac arrest.
    Mori F; Mohri H
    Ann Thorac Surg; 1985 Jan; 39(1):30-6. PubMed ID: 3966834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral protection during moderate hypothermic circulatory arrest: histopathology and magnetic resonance spectroscopy of brain energetics and intracellular pH in pigs.
    Filgueiras CL; Ryner L; Ye J; Yang L; Ede M; Sun J; Kozlowski P; Summers R; Saunders JK; Salerno TA; Deslauriers R
    J Thorac Cardiovasc Surg; 1996 Oct; 112(4):1073-80. PubMed ID: 8873735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection by coenzyme Q10 of canine myocardial reperfusion injury after preservation.
    Matsushima T; Sueda T; Matsuura Y; Kawasaki T
    J Thorac Cardiovasc Surg; 1992 May; 103(5):945-51. PubMed ID: 1569776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass.
    Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA
    J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reperfusate composition: supplemental role of intravenous and intracoronary coenzyme Q10 in avoiding reperfusion damage.
    Okamoto F; Allen BS; Buckberg GD; Leaf J; Bugyi H
    J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):573-82. PubMed ID: 3747585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel sialyl Lewis X analog attenuates cerebral injury after deep hypothermic circulatory arrest.
    Shin'oka T; Nagashima M; Nollert G; Shum-Tim D; Laussen PC; Lidov HG; du Plessis A; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1204-11. PubMed ID: 10343273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.
    Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study.
    Robbins RC; Balaban RS; Swain JA
    J Thorac Cardiovasc Surg; 1990 May; 99(5):878-84. PubMed ID: 2329827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.
    Kajimoto M; Ledee DR; Olson AK; Isern NG; Robillard-Frayne I; Des Rosiers C; Portman MA
    J Cereb Blood Flow Metab; 2016 Nov; 36(11):1992-2004. PubMed ID: 27604310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Tsui SS; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Jun; 119(6):1262-9. PubMed ID: 10838546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest.
    Shin'oka T; Shum-Tim D; Jonas RA; Lidov HG; Laussen PC; Miura T; du Plessis A
    J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1610-20; discussion 1620-1. PubMed ID: 8975853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest.
    Skaryak LA; Kirshbom PM; DiBernardo LR; Kern FH; Greeley WJ; Ungerleider RM; Gaynor JW
    J Thorac Cardiovasc Surg; 1995 Apr; 109(4):744-51; discussion 751-2. PubMed ID: 7715223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury.
    Nollert G; Nagashima M; Bucerius J; Shin'oka T; Lidov HG; du Plessis A; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1172-9. PubMed ID: 10343269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pretreatment with coenzyme Q10 on myocardial preservation during aortic cross clamping.
    Tominaga R; Kouda Y; Tanaka J; Nakano E; Ando H; Ueno Y; Tokunaga K
    J Surg Res; 1983 Feb; 34(2):111-7. PubMed ID: 6823105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of intermittent deep hypothermic circulatory arrest on brain metabolism.
    Kimura T; Muraoka R; Chiba Y; Ihaya A; Morioka K
    J Thorac Cardiovasc Surg; 1994 Oct; 108(4):658-63. PubMed ID: 7934099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPA glutamate receptor antagonism reduces neurologic injury after hypothermic circulatory arrest.
    Redmond JM; Zehr KJ; Blue ME; Lange MS; Gillinov AM; Troncoso JC; Cameron DE; Johnston MV; Baumgartner WA
    Ann Thorac Surg; 1995 Mar; 59(3):579-84. PubMed ID: 7887693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.