These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8029205)

  • 1. Protein structure comparisons using a combination of a genetic algorithm, dynamic programming and least-squares minimization.
    May AC; Johnson MS
    Protein Eng; 1994 Apr; 7(4):475-85. PubMed ID: 8029205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pairwise iterative superposition of distantly related proteins and assessment of the significance of 3-D structural similarity.
    May AC
    Protein Eng; 1996 Dec; 9(12):1093-101. PubMed ID: 9010923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MUSTANG: a multiple structural alignment algorithm.
    Konagurthu AS; Whisstock JC; Stuckey PJ; Lesk AM
    Proteins; 2006 Aug; 64(3):559-74. PubMed ID: 16736488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a database of structural alignments and phylogenetic trees in investigating the relationship between sequence and structural variability among homologous proteins.
    Balaji S; Srinivasan N
    Protein Eng; 2001 Apr; 14(4):219-26. PubMed ID: 11391013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels.
    Russell RB; Barton GJ
    Proteins; 1992 Oct; 14(2):309-23. PubMed ID: 1409577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying distantly related protein sequences.
    Pearson WR
    Comput Appl Biosci; 1997 Aug; 13(4):325-32. PubMed ID: 9283747
    [No Abstract]   [Full Text] [Related]  

  • 8. Defining topological equivalences in protein structures by means of a dynamic programming algorithm.
    Luo Y; Lai L; Xu X; Tang Y
    Protein Eng; 1993 Jun; 6(4):373-6. PubMed ID: 8332594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding common sequence and structure motifs in a set of RNA sequences.
    Gorodkin J; Heyer LJ; Stormo GD
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():120-3. PubMed ID: 9322025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure comparison by alignment of distance matrices.
    Holm L; Sander C
    J Mol Biol; 1993 Sep; 233(1):123-38. PubMed ID: 8377180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast unbiased comparison of protein structures by means of the Needleman-Wunsch algorithm.
    Rose J; Eisenmenger F
    J Mol Evol; 1991 Apr; 32(4):340-54. PubMed ID: 1907667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of a distance cut-off into structural alignment by the double dynamic programming algorithm.
    Toh H
    Comput Appl Biosci; 1997 Aug; 13(4):387-96. PubMed ID: 9283753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):665-78. PubMed ID: 10966776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid similarity matrix for homology modeling derived from structural alignment and optimized by the Monte Carlo method.
    Ogata K; Ohya M; Umeyama H
    J Mol Graph Model; 1998; 16(4-6):178-89, 254. PubMed ID: 10522237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting multiple structural alignments from pairwise alignments: a comparison of a rigorous and a heuristic approach.
    Sandelin E
    Bioinformatics; 2005 Apr; 21(7):1002-9. PubMed ID: 15531607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
    Terashi G; Takeda-Shitaka M
    PLoS One; 2015; 10(10):e0141440. PubMed ID: 26502070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding.
    Fischer D; Wolfson H; Lin SL; Nussinov R
    Protein Sci; 1994 May; 3(5):769-78. PubMed ID: 8061606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic programming algorithms for biological sequence comparison.
    Pearson WR; Miller W
    Methods Enzymol; 1992; 210():575-601. PubMed ID: 1584052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.
    Joseph AP; Srinivasan N; de Brevern AG
    Biochimie; 2012 Sep; 94(9):2025-34. PubMed ID: 22676903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.