These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8030379)
1. Characterization of the mitochondrial DNA polymerase from Saccharomyces cerevisiae. Sen S; Mukhopadhyay S; Wetzel J; Biswas TK Acta Biochim Pol; 1994; 41(1):79-86. PubMed ID: 8030379 [TBL] [Abstract][Full Text] [Related]
2. Properties of mitochondrial DNA polymerase in mitochondrial DNA synthesis in yeast. Biswas TK; Sengupta P; Green R; Hakim P; Biswas B; Sen S Acta Biochim Pol; 1995; 42(3):317-24. PubMed ID: 8588482 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of an in vitro DNA replication system from maize mitochondria. Daniell H; Zheng D; Nielsen BL Biochem Biophys Res Commun; 1995 Mar; 208(1):287-94. PubMed ID: 7887942 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
6. [Isolation and characterization of DNA polymerase alpha, beta and gamma from the cells of the loach (Misgurnus fossilis)]. Mikhaĭlov VS; Guliamov DB Biokhimiia; 1981 Sep; 46(9):1539-47. PubMed ID: 7295816 [TBL] [Abstract][Full Text] [Related]
7. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
8. The carboxyl-terminal extension on fungal mitochondrial DNA polymerases: identification of a critical region of the enzyme from Saccharomyces cerevisiae. Young MJ; Theriault SS; Li M; Court DA Yeast; 2006 Jan; 23(2):101-16. PubMed ID: 16491467 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Longley MJ; Ropp PA; Lim SE; Copeland WC Biochemistry; 1998 Jul; 37(29):10529-39. PubMed ID: 9671525 [TBL] [Abstract][Full Text] [Related]
10. Characterization of DNA polymerase associated with nuclear membrane fractions from uninfected and adenovirus 2-infected KB cells. Ito K; Arens M; Green M Biochim Biophys Acta; 1976 Oct; 447(3):340-52. PubMed ID: 974129 [TBL] [Abstract][Full Text] [Related]
11. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
12. Yeast DNA polymerases: antigenic relationship, use of RNA primer and associated exonuclease activity. Wintersberger E Eur J Biochem; 1978 Mar; 84(1):167-72. PubMed ID: 77222 [TBL] [Abstract][Full Text] [Related]
13. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
14. Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. Eriksson S; Xu B; Clayton DA J Biol Chem; 1995 Aug; 270(32):18929-34. PubMed ID: 7642550 [TBL] [Abstract][Full Text] [Related]
15. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Cheng X; Dunaway S; Ivessa AS Mitochondrion; 2007 May; 7(3):211-22. PubMed ID: 17257907 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the presence of DNA primase in mitochondria of Saccharomyces cerevisiae. Desai SD; Pasupathy K; Chetty KG; Pradhan DS Biochem Biophys Res Commun; 1989 Apr; 160(2):525-34. PubMed ID: 2655590 [TBL] [Abstract][Full Text] [Related]
17. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site. Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of the Saccharomyces cerevisiae DNA polymerase delta overproduced in Escherichia coli. Brown WC; Duncan JA; Campbell JL J Biol Chem; 1993 Jan; 268(2):982-90. PubMed ID: 8380419 [TBL] [Abstract][Full Text] [Related]
19. [Complexes of nuclear DNA-polymerases with 3'----5'-exonucleases from the rat liver]. Kleĭner NE; Kravetskaia TP; Legina OK; Naryzhnyĭ SN; Krutiakov VM Mol Biol (Mosk); 1988; 22(2):498-505. PubMed ID: 2839767 [TBL] [Abstract][Full Text] [Related]
20. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding. Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]