These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8030863)
1. Evidence implicating xanthine oxidase and neutrophils in reperfusion-induced microvascular dysfunction. Kurose I; Granger DN Ann N Y Acad Sci; 1994 Jun; 723():158-79. PubMed ID: 8030863 [No Abstract] [Full Text] [Related]
2. Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion. Inauen W; Suzuki M; Granger DN Microcirc Endothelium Lymphatics; 1989; 5(3-5):143-55. PubMed ID: 2700373 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of postischemic vascular dysfunction in skeletal muscle: implications for therapeutic intervention. Carden DL; Korthuis RJ Microcirc Endothelium Lymphatics; 1989; 5(3-5):277-98. PubMed ID: 2700375 [TBL] [Abstract][Full Text] [Related]
4. Mechanism and protection from ischemic intestinal injury. Banda MA; Granger DN Transplant Proc; 1996 Oct; 28(5):2595-7. PubMed ID: 8907968 [No Abstract] [Full Text] [Related]
5. The role of xanthine oxidase and the effects of antioxidants in ischemia reperfusion cell injury. Cañas PE Acta Physiol Pharmacol Ther Latinoam; 1999; 49(1):13-20. PubMed ID: 10797836 [TBL] [Abstract][Full Text] [Related]
6. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes. Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of reperfusion injury. Zimmerman BJ; Granger DN Am J Med Sci; 1994 Apr; 307(4):284-92. PubMed ID: 8160724 [TBL] [Abstract][Full Text] [Related]
8. Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide. Rieger JM; Shah AR; Gidday JM Exp Eye Res; 2002 Apr; 74(4):493-501. PubMed ID: 12076093 [TBL] [Abstract][Full Text] [Related]
9. Acceleration of adhesion of cancer cells and neutrophils to endothelial cells in the absence of de novo protein synthesis: possible implication for involvement of hydroxyl radicals. Suzuki K; Eguchi H; Koh YH; Park YS; Taniguchi N Biochem Biophys Res Commun; 1999 Apr; 257(1):214-7. PubMed ID: 10092535 [TBL] [Abstract][Full Text] [Related]
10. Endothelium-leukocyte interactions under the influence of the superoxide-nitrogen monoxide system. Galkina SI; Dormeneva EV; Bachschmid M; Pushkareva MA; Sud'ina GF; Ullrich V Med Sci Monit; 2004 Sep; 10(9):BR307-16. PubMed ID: 15328475 [TBL] [Abstract][Full Text] [Related]
12. NAD(P)H oxidase contributes to the progression of remote hepatic parenchymal injury and endothelial dysfunction, but not microvascular perfusion deficits. Dorman RB; Wunder C; Saba H; Shoemaker JL; MacMillan-Crow LA; Brock RW Am J Physiol Gastrointest Liver Physiol; 2006 May; 290(5):G1025-32. PubMed ID: 16339298 [TBL] [Abstract][Full Text] [Related]
13. [Possible significance of free oxygen radicals for reperfusion injury]. Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162 [TBL] [Abstract][Full Text] [Related]
14. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Meneshian A; Bulkley GB Microcirculation; 2002 Jul; 9(3):161-75. PubMed ID: 12080414 [TBL] [Abstract][Full Text] [Related]
15. NADPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production--role of NADPH oxidase in rat stomachs. Nakagiri A; Sunamoto M; Murakami M Inflammopharmacology; 2007 Dec; 15(6):278-81. PubMed ID: 18236020 [TBL] [Abstract][Full Text] [Related]
16. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214 [TBL] [Abstract][Full Text] [Related]
17. Morphologic changes and xanthine oxidase activity in the equine jejunum during low flow ischemia and reperfusion. Vatistas NJ; Snyder JR; Nieto J; Hildebrand SV; Woliner MJ; Harmon FA; Barry SJ; Drake C Am J Vet Res; 1998 Jun; 59(6):772-6. PubMed ID: 9622750 [TBL] [Abstract][Full Text] [Related]
18. Helicobacter pylori-induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets. Kurose I; Granger DN; Evans DJ; Evans DG; Graham DY; Miyasaka M; Anderson DC; Wolf RE; Cepinskas G; Kvietys PR Gastroenterology; 1994 Jul; 107(1):70-9. PubMed ID: 8020691 [TBL] [Abstract][Full Text] [Related]
19. Immune complexes mediate rapid alterations in microvascular permeability: roles for neutrophils, complement, and platelets. Lister KJ; James WG; Hickey MJ Microcirculation; 2007; 14(7):709-22. PubMed ID: 17885996 [TBL] [Abstract][Full Text] [Related]
20. Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes. Palozza P; Agostara G; Piccioni E; Bartoli GM Arch Biochem Biophys; 1994 Jul; 312(1):88-94. PubMed ID: 8031151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]