These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8031089)

  • 1. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance.
    Cook GM; Russell JB
    Appl Environ Microbiol; 1994 Jun; 60(6):1942-8. PubMed ID: 8031089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1998 Mar; 64(3):976-81. PubMed ID: 9501437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis.
    Russell JB; Strobel HJ
    Arch Microbiol; 1990; 153(4):378-83. PubMed ID: 2140038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pH on the heat production and membrane resistance of Streptococcus bovis.
    Russell JB
    Arch Microbiol; 1992; 158(1):54-8. PubMed ID: 1444715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energy spilling reactions of bacteria and other organisms.
    Russell JB
    J Mol Microbiol Biotechnol; 2007; 13(1-3):1-11. PubMed ID: 17693707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Role for Fructose 1,6-Diphosphate in the ATPase-Mediated Energy-Spilling Reaction of Streptococcus bovis.
    Bond DR; Russell JB
    Appl Environ Microbiol; 1996 Jun; 62(6):2095-9. PubMed ID: 16535338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions.
    Bulthuis BA; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1993 Jan; 63(1):1-16. PubMed ID: 8386914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-assessment of bacterial growth efficiency: the heat production and membrane potential of Streptococcus bovis in batch and continuous culture.
    Russell JB
    Arch Microbiol; 1991; 155(6):559-65. PubMed ID: 1953297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates.
    Russell JB
    Appl Environ Microbiol; 1993 Jun; 59(6):1747-51. PubMed ID: 8328799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2664-8. PubMed ID: 2481426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glutamine cyclotransferase reaction of Streptococcus bovis: a novel mechanism of deriving energy from non-oxidative and non-reductive deamination.
    Cook GM; Russell JB
    FEMS Microbiol Lett; 1993 Aug; 111(2-3):263-8. PubMed ID: 8405935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
    Rolfe DF; Brown GC
    Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient in Streptococcus lactis.
    Maloney PC; Hansen FC
    J Membr Biol; 1982; 66(1):63-75. PubMed ID: 6279855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of bacterial growth: balance of anabolic and catabolic reactions.
    Russell JB; Cook GM
    Microbiol Rev; 1995 Mar; 59(1):48-62. PubMed ID: 7708012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Weerth S; Schindlbeck M; Klein U
    J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+.
    Hicks DB; Krulwich TA
    J Biol Chem; 1990 Nov; 265(33):20547-54. PubMed ID: 2173711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of H+ to adenosine 5'-triphosphate stoichiometry of Escherichia coli ATP synthase using 31P NMR.
    Vink R; Bendall MR; Simpson SJ; Rogers PJ
    Biochemistry; 1984 Jul; 23(16):3667-75. PubMed ID: 6089877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.