These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8031089)

  • 21. The ability of 2-deoxyglucose to promote the lysis of Streptococcus bovis JB1 via a mechanism involving cell wall stability.
    Russell JB; Wells JE
    Curr Microbiol; 1997 Nov; 35(5):299-304. PubMed ID: 9462960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defective energy coupling in delta-subunit mutants of Escherichia coli F1F0-ATP synthase.
    Hazard AL; Senior AE
    J Biol Chem; 1994 Jan; 269(1):427-32. PubMed ID: 8276831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bovicin HC5, a lantibiotic produced by Streptococcus bovis HC5, catalyzes the efflux of intracellular potassium but not ATP.
    Mantovani HC; Russell JB
    Antimicrob Agents Chemother; 2008 Jun; 52(6):2247-9. PubMed ID: 18347110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast.
    Serrano R
    Eur J Biochem; 1980 Apr; 105(2):419-24. PubMed ID: 6247154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocating adenosine triphosphatase.
    Sone N; Yoshida M; Hirata H; Okamoto H; Kagawa Y
    J Membr Biol; 1976 Dec; 30(2):121-34. PubMed ID: 13221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri.
    Peinemann S; Müller V; Blaut M; Gottschalk G
    J Bacteriol; 1988 Mar; 170(3):1369-72. PubMed ID: 3343222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.
    Piper PW; Ortiz-Calderon C; Holyoak C; Coote P; Cole M
    Cell Stress Chaperones; 1997 Mar; 2(1):12-24. PubMed ID: 9250391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria.
    Dimroth P; Schink B
    Arch Microbiol; 1998 Aug; 170(2):69-77. PubMed ID: 9683642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri.
    Bott M; Eikmanns B; Thauer RK
    Eur J Biochem; 1986 Sep; 159(2):393-8. PubMed ID: 3093229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The diversion of lactose carbon through the tagatose pathway reduces the intracellular fructose 1,6-bisphosphate and growth rate of Streptococcus bovis.
    Bond DR; Tsai BM; Russell JB
    Appl Microbiol Biotechnol; 1998 May; 49(5):600-5. PubMed ID: 9650258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1976 Nov; 110(23):305-11. PubMed ID: 1015953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Membrane proton conductivity and energy-dependent fluxes of hydrogen ions in bacteria Enterococcus hirae grown in media with different pH values].
    Biofizika; 2005; 50(4):680-3. PubMed ID: 16212060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase.
    Steinmetz PR; Husted RF; Mueller A; Beauwens R
    J Membr Biol; 1981 Mar; 59(1):27-34. PubMed ID: 6264081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
    Otto R; Sonnenberg AS; Veldkamp H; Konings WN
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5502-6. PubMed ID: 6254084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation.
    Tran QH; Unden G
    Eur J Biochem; 1998 Jan; 251(1-2):538-43. PubMed ID: 9492330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.