BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8031127)

  • 1. Macrophage recognition of saccharide chains on the erythrocytes damaged by iron-catalyzed oxidation.
    Beppu M; Takahashi T; Kashiwada M; Masukawa S; Kikugawa K
    Arch Biochem Biophys; 1994 Jul; 312(1):189-97. PubMed ID: 8031127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of poly-N-acetyllactosaminyl saccharide chains on iron-oxidized erythrocytes by human monocytic leukemia cell line THP-1 differentiated into macrophages.
    Beppu M; Eda S; Fujimaki M; Hishiyama E; Kikugawa K
    Biol Pharm Bull; 1996 Feb; 19(2):188-94. PubMed ID: 8850303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of oxidized Jurkat cells to THP-1 macrophages and antiband 3 IgG through sialylated poly-N-acetyllactosaminyl sugar chains.
    Beppu M; Ando K; Saeki M; Yokoyama N; Kikugawa K
    Arch Biochem Biophys; 2000 Dec; 384(2):368-74. PubMed ID: 11368325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-N-acetyllactosaminyl saccharide chains of band 3 as determinants for anti-band 3 autoantibody binding to senescent and oxidized erythrocytes.
    Beppu M; Ando K; Kikugawa K
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):1007-24. PubMed ID: 8960777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of sialosaccharide chains of glycophorin on damaged erythrocytes by macrophage scavenger receptors.
    Beppu M; Hayashi T; Hasegawa T; Kikugawa K
    Biochim Biophys Acta; 1995 Jul; 1268(1):9-19. PubMed ID: 7626668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of macrophage recognition of SH-oxidized erythrocytes: recognition of glycophorin A on erythrocytes by a macrophage receptor for sialosaccharides.
    Beppu M; Takahashi T; Hayashi T; Kikugawa K
    Biochim Biophys Acta; 1994 Aug; 1223(1):47-56. PubMed ID: 8061053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clearance of oxidized erythrocytes by macrophages: involvement of caspases in the generation of clearance signal at band 3 glycoprotein.
    Miki Y; Tazawa T; Hirano K; Matsushima H; Kumamoto S; Hamasaki N; Yamaguchi T; Beppu M
    Biochem Biophys Res Commun; 2007 Nov; 363(1):57-62. PubMed ID: 17854772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of band 3 aggregation in erythrocytes results in anti-band 3 autoantibody binding to the carbohydrate epitopes of band 3.
    Ando K; Kikugawa K; Beppu M
    Arch Biochem Biophys; 1997 Mar; 339(1):250-7. PubMed ID: 9056256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of anti-band 3 autoantibody to sialylated poly-N-acetyllactosaminyl sugar chains of band 3 glycoprotein on polyvinylidene difluoride membrane and sepharose gel: further evidence for anti-band 3 autoantibody binding to the sugar chains of oxidized and senescent erythrocytes.
    Ando K; Kikugawa K; Beppu M
    J Biochem; 1996 Apr; 119(4):639-47. PubMed ID: 8743563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidatively damaged erythrocytes are recognized by membrane proteins of macrophages.
    Eda S; Kikugawa K; Beppu M
    Free Radic Res; 1997 Jul; 27(1):23-30. PubMed ID: 9269576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism.
    Beppu M; Mizukami A; Nagoya M; Kikugawa K
    J Biol Chem; 1990 Feb; 265(6):3226-33. PubMed ID: 2303447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding characteristics of human lactoferrin to the human monocytic leukemia cell line THP-1 differentiated into macrophages.
    Eda S; Kikugawa K; Beppu M
    Biol Pharm Bull; 1996 Feb; 19(2):167-75. PubMed ID: 8850300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced adhesion of oxidized mouse polymorphonuclear leukocytes to macrophages by a cell-surface sugar-dependent mechanism.
    Beppu M; Yokoyama N; Motohashi M; Kikugawa K
    Biol Pharm Bull; 2001 Jan; 24(1):19-26. PubMed ID: 11201240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of calcium signaling in the fibronectin-stimulated macrophage recognition of oxidatively damaged erythrocytes.
    Beppu M; Azuma M; Maruyama N; Kikugawa K
    Biochim Biophys Acta; 2001 Apr; 1538(2-3):119-28. PubMed ID: 11336783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of oxidation and crosslinking on oxygen binding properties of mouse erythrocytes.
    Lotero LA; Jordán JA; López RM; García-Pérez AI; Diez JC
    Cell Biochem Funct; 2001 Jun; 19(2):89-95. PubMed ID: 11335933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel lectin-like proteins on the surface of human monocytic leukemia cell line THP-1 cells that recognize oxidized cells.
    Eda S; Beppu M; Yokoyama N; Kikugawa K
    Arch Biochem Biophys; 2001 Jan; 385(1):186-93. PubMed ID: 11361016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage recognition of periodate-treated erythrocytes: involvement of disulfide formation of the erythrocyte membrane proteins.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1989 Feb; 979(1):35-45. PubMed ID: 2537107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of senescent cell antigen on old cells initiates IgG binding to a neoantigen.
    Kay MM
    Cell Mol Biol (Noisy-le-grand); 1993 Mar; 39(2):131-53. PubMed ID: 8513271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoregulation of cellular life span.
    Kay M
    Ann N Y Acad Sci; 2005 Dec; 1057():85-111. PubMed ID: 16399889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage recognition of the erythrocytes modified by oxidizing agents.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1987 Sep; 930(2):244-53. PubMed ID: 3620517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.