These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8031128)

  • 61. Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges.
    Hartwig A; Klyszcz-Nasko H; Schlepegrell R; Beyersmann D
    Carcinogenesis; 1993 Jan; 14(1):107-12. PubMed ID: 8425256
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrogen exchange equilibria in thiols.
    Hofstetter D; Thalmann B; Nauser T; Koppenol WH
    Chem Res Toxicol; 2012 Sep; 25(9):1862-7. PubMed ID: 22712484
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Oxygen radicals photo-induced by ferric nitrilotriacetate complex.
    Tsuchiya K; Akai K; Tokumura A; Abe S; Tamaki T; Takiguchi Y; Fukuzawa K
    Biochim Biophys Acta; 2005 Aug; 1725(1):111-9. PubMed ID: 15950386
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Glutathione synthetase promotes the reduction of arsenate via arsenolysis of glutathione.
    Németi B; Anderson ME; Gregus Z
    Biochimie; 2012 Jun; 94(6):1327-33. PubMed ID: 22426003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments.
    Chekmeneva E; Gusmão R; Díaz-Cruz JM; Ariño C; Esteban M
    Metallomics; 2011 Aug; 3(8):838-46. PubMed ID: 21687859
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Peroxide-dependent and -independent lipid peroxidations catalyzed by chelated iron.
    Fukuzawa K; Fujii T; Mukai K
    Arch Biochem Biophys; 1991 Nov; 290(2):489-96. PubMed ID: 1656881
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lipid peroxidation and cytotoxicity of Ehrlich ascites tumor cells by ferric nitrilotriacetate.
    Nakamoto S; Yamanoi Y; Kawabata T; Sadahira Y; Mori M; Awai M
    Biochim Biophys Acta; 1986 Oct; 889(1):15-22. PubMed ID: 2876731
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mapping of sulfur metabolic pathway by LC Orbitrap mass spectrometry.
    Rao Y; McCooeye M; Mester Z
    Anal Chim Acta; 2012 Apr; 721():129-36. PubMed ID: 22405311
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effects of modulation of gamma-glutamyl transpeptidase activity in HepG2 cells on thiol homeostasis and caspase-3-activity.
    Iciek M; Chwatko G; Rokita H; Bald E; Włodek L
    Biochim Biophys Acta; 2007 Feb; 1773(2):201-8. PubMed ID: 17141888
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectral analysis of Fe(III)-complex reduction by hemoglobin: possible mechanisms of interaction.
    Harrington JP; Hicks RL
    Int J Biochem; 1994 Sep; 26(9):1111-7. PubMed ID: 7988735
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200.
    Arnold RG; Olson TM; Hoffmann MR
    Biotechnol Bioeng; 1986 Nov; 28(11):1657-71. PubMed ID: 18555280
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduction of NOx in Fe-EDTA and Fe-NTA solutions by an enriched bacterial population.
    Chandrashekhar B; Pai P; Morone A; Sahu N; Pandey RA
    Bioresour Technol; 2013 Feb; 130():644-51. PubMed ID: 23334022
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Toxicity, distribution, and elimination of thiol complexes of methylmercury after intracerebral injection.
    Fair PH; Balthrop JE; Wade JL; Braddon-Galloway S
    J Toxicol Environ Health; 1986; 19(2):219-33. PubMed ID: 3761382
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interaction of molybdocene dichloride with cysteine-containing peptides: coordination, regioselective hydrolysis, and intramolecular aminolysis.
    Erxleben A
    Inorg Chem; 2005 Feb; 44(4):1082-94. PubMed ID: 15859290
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nitrilotriacetate stimulation of anaerobic Fe(III) respiration by mobilization of humic materials in soil.
    Luu Y; Ramsay BA; Ramsay JA
    Appl Environ Microbiol; 2003 Sep; 69(9):5255-62. PubMed ID: 12957911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous.
    Bunescu A; Besse-Hoggan P; Sancelme M; Mailhot G; Delort AM
    Appl Environ Microbiol; 2008 Oct; 74(20):6320-6. PubMed ID: 18757580
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of ferric nitrilotriacetate on rostral mesencephalic cells.
    Swaiman KF; Machen VL
    Neurochem Res; 1991 Dec; 16(12):1269-74. PubMed ID: 1686065
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of ferric nitrilotriacetate on predominantly cortical glial cell cultures.
    Swaiman KF; Machen VL
    Neurochem Res; 1990 May; 15(5):501-5. PubMed ID: 2370942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [FeIII(SR)4]1- complexes can be synthesized by the direct reaction of thiolates with FeCl3.
    Chang S; Koch SA
    J Inorg Biochem; 2007 Nov; 101(11-12):1758-9. PubMed ID: 17723243
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Iron(III)-nitrilotriacetate: an agent for reducing the time interval of tumor imaging with gallium citrate.
    Saji H; Hata N; Horiuchi K; Yokoyama A; Yamamoto K; Torizuka K
    Int J Nucl Med Biol; 1985; 12(4):281-7. PubMed ID: 3866752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.