These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8031734)

  • 41. Gut microbiome composition differences among breeds impact feed efficiency in swine.
    Bergamaschi M; Tiezzi F; Howard J; Huang YJ; Gray KA; Schillebeeckx C; McNulty NP; Maltecca C
    Microbiome; 2020 Jul; 8(1):110. PubMed ID: 32698902
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows.
    Le Goff G; Noblet J
    J Anim Sci; 2001 Sep; 79(9):2418-27. PubMed ID: 11583429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs.
    He L; Wu L; Xu Z; Li T; Yao K; Cui Z; Yin Y; Wu G
    Amino Acids; 2016 Jan; 48(1):21-30. PubMed ID: 26210756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy metabolism and body composition of young pigs given low-protein diets.
    McCracken KJ; McAllister A
    Br J Nutr; 1984 Mar; 51(2):225-34. PubMed ID: 6704370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relative influence of dietary protein and energy contents on lysine requirements and voluntary feed intake of rainbow trout fry.
    Van Larebeke M; Dockx G; Larondelle Y; Rollin X
    Br J Nutr; 2018 Jan; 119(1):42-56. PubMed ID: 29223178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of the dietary net energy concentration on feed intake and performance of growing-finishing pigs housed individually.
    Quiniou N; Noblet J
    J Anim Sci; 2012 Dec; 90(12):4362-72. PubMed ID: 22696619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degree of amino acid restrictions during the grower phase and compensatory growth in pigs selected for lean growth efficiency.
    Fabian J; Chiba LI; Kuhlers DL; Frobish LT; Nadarajah K; Kerth CR; McElhenney WH; Lewis AJ
    J Anim Sci; 2002 Oct; 80(10):2610-8. PubMed ID: 12413083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig.
    Fernández-Fígares I; Wray-Cahen D; Steele NC; Campbell RG; Hall DD; Virtanen E; Caperna TJ
    J Anim Sci; 2002 Feb; 80(2):421-8. PubMed ID: 11881930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of high dietary fat content on heat production and lipid and protein deposition in growing immunocastrated male pigs.
    Batorek-Lukač N; Dubois S; Noblet J; Čandek-Potokar M; Labussière E
    Animal; 2016 Dec; 10(12):1941-1948. PubMed ID: 27146081
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of chromium tripicolinate supplementation and dietary energy level and source on growth, carcass, and blood criteria in growing pigs.
    van de Ligt CP; Lindemann MD; Cromwell GL
    J Anim Sci; 2002 Feb; 80(2):483-93. PubMed ID: 11883435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactive effect of dietary protein and dried citrus pulp levels on growth performance, small intestinal morphology, and hindgut fermentation of weanling pigs.
    Almeida VV; Nuñez AJ; Schinckel AP; Alvarenga PV; Castelini FR; Silva-Guillen YV; Thomaz MC
    J Anim Sci; 2017 Jan; 95(1):257-269. PubMed ID: 28177347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of space allocations and energy levels on growth performance and nutrient digestibility in growing and finishing pigs.
    Lei XJ; Yan L; Kim YM; Kim IH
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):e498-e503. PubMed ID: 28504407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy, phosphorus, and amino acid digestibility of high-protein distillers dried grains and corn germ fed to growing pigs.
    Widmer MR; McGinnis LM; Stein HH
    J Anim Sci; 2007 Nov; 85(11):2994-3003. PubMed ID: 17644788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of the fatty acid profile of subcutaneous back-fat adipose tissue in growing Iberian and Landrace × Large White pigs.
    Barea R; Isabel B; Nieto R; López-Bote C; Aguilera JF
    Animal; 2013 Apr; 7(4):688-98. PubMed ID: 23031353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effective energy: a concept of energy utilization applied across species.
    Emmans GC
    Br J Nutr; 1994 Jun; 71(6):801-21. PubMed ID: 8031731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of the dietary protein content and the feeding level on protein and energy metabolism in Iberian pigs growing from 50 to 100 kg body weight.
    Barea R; Nieto R; Aguilera JF
    Animal; 2007 Mar; 1(3):357-65. PubMed ID: 22444333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of growth and efficiency of dietary energy utilization by growing pigs offered feeding programs based on the metabolizable energy or the net energy system.
    Acosta J; Patience JF; Boyd RD
    J Anim Sci; 2016 Apr; 94(4):1520-30. PubMed ID: 27136011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of lysine intake on energy partitioning and utilization in growing pigs.
    Ringel J; Susenbeth A
    Arch Anim Nutr; 2006 Feb; 60(1):49-56. PubMed ID: 16529157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of energy intake, genotype, and body weight on protein retention in pigs when dietary lysine is the first-limiting factor.
    Susenbeth A; Dickel T; Diekenhorst A; Höhler D
    J Anim Sci; 1999 Nov; 77(11):2985-9. PubMed ID: 10568468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Similar effects of lysine deficiency in muscle biochemical characteristics of fatty and lean piglets.
    Palma-Granados P; Haro A; Seiquer I; Lara L; Aguilera JF; Nieto R
    J Anim Sci; 2017 Jul; 95(7):3025-3036. PubMed ID: 28727124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.