BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8031854)

  • 1. Expression and kinetic characterization of barley chymotrypsin inhibitors 1a and 1b.
    Greagg MA; Brauer AB; Leatherbarrow RJ
    Biochim Biophys Acta; 1994 Jun; 1222(2):179-86. PubMed ID: 8031854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant chymotrypsin inhibitor 2: expression, kinetic analysis of inhibition with alpha-chymotrypsin and wild-type and mutant subtilisin BPN', and protein engineering to investigate inhibitory specificity and mechanism.
    Longstaff C; Campbell AF; Fersht AR
    Biochemistry; 1990 Aug; 29(31):7339-47. PubMed ID: 2207109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a small peptide-based proteinase inhibitor by modeling the active-site region of barley chymotrypsin inhibitor 2.
    Leatherbarrow RJ; Salacinski HJ
    Biochemistry; 1991 Nov; 30(44):10717-21. PubMed ID: 1931991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the specificity of barley chymotrypsin inhibitor 2 by cysteine engineering of the P1 residue.
    Hasan Z; Leatherbarrow RJ
    Biochim Biophys Acta; 1998 May; 1384(2):325-34. PubMed ID: 9659394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel double-headed proteinaceous inhibitor for metalloproteinase and serine proteinase.
    Hiraga K; Suzuki T; Oda K
    J Biol Chem; 2000 Aug; 275(33):25173-9. PubMed ID: 10827083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation.
    Heinz DW; Hyberts SG; Peng JW; Priestle JP; Wagner G; Grütter MG
    Biochemistry; 1992 Sep; 31(37):8755-66. PubMed ID: 1390662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat Subtilisin/Chymotrypsin Inhibitor (WSCI) as a scaffold for novel serine protease inhibitors with a given specificity.
    Tedeschi F; Di Maro A; Facchiano A; Costantini S; Chambery A; Bruni N; Capuzzi V; Ficca AG; Poerio E
    Mol Biosyst; 2012 Oct; 8(12):3335-43. PubMed ID: 23090387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum.
    Pekkarinen AI; Jones BL
    J Agric Food Chem; 2003 Mar; 51(6):1710-7. PubMed ID: 12617610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of the specificity of ecotin, an E. coli serine proteinase inhibitor, by site directed mutagenesis.
    Pál G; Sprengel G; Patthy A; Gráf L
    FEBS Lett; 1994 Mar; 342(1):57-60. PubMed ID: 8143850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions.
    Roesler KR; Rao AG
    Protein Eng; 1999 Nov; 12(11):967-73. PubMed ID: 10585502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests.
    Di Gennaro S; Ficca AG; Panichi D; Poerio E
    Biol Chem; 2005 Apr; 386(4):383-9. PubMed ID: 15899701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The location of inhibitory specificities in human mucus proteinase inhibitor (MPI): separate expression of the COOH-terminal domain yields an active inhibitor of three different proteinases.
    Meckelein B; Nikiforov T; Clemen A; Appelhans H
    Protein Eng; 1990 Jan; 3(3):215-20. PubMed ID: 2158659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes.
    Lu W; Randal M; Kossiakoff A; Kent SB
    Chem Biol; 1999 Jul; 6(7):419-27. PubMed ID: 10381402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression of three plant serpins with distinct inhibitory specificities.
    Dahl SW; Rasmussen SK; Hejgaard J
    J Biol Chem; 1996 Oct; 271(41):25083-8. PubMed ID: 8810262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
    McPhalen CA; James MN
    Biochemistry; 1988 Aug; 27(17):6582-98. PubMed ID: 3064813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center.
    Hejgaard J
    Biol Chem; 2005 Dec; 386(12):1319-23. PubMed ID: 16336127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of residues in the reactive site loop of chymotrypsin inhibitor 2 to protein stability and activity.
    Jackson SE; Fersht AR
    Biochemistry; 1994 Nov; 33(46):13880-7. PubMed ID: 7947796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M
    Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris.
    García-Fernández R; Ziegelmüller P; González L; Mansur M; Machado Y; Redecke L; Hahn U; Betzel C; Chávez Mde L
    Protein Expr Purif; 2016 Jul; 123():42-50. PubMed ID: 26993255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and characterization of elastase inhibitors from the ascarid nematodes Anisakis simplex and Ascaris suum.
    Nguyen TT; Qasim MA; Morris S; Lu CC; Hill D; Laskowski M; Sakanari JA
    Mol Biochem Parasitol; 1999 Jul; 102(1):79-89. PubMed ID: 10477178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.