BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8032675)

  • 1. Intergenomic translocations and the genomic composition of Avena maroccana Gdgr. revealed by FISH.
    Leggett JM; Thomas HM; Meredith MR; Humphreys MW; Morgan WG; Thomas H; King IP
    Chromosome Res; 1994 Mar; 2(2):163-4. PubMed ID: 8032675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization.
    Hayasaki M; Morikawa T; Tarumoto I
    Genes Genet Syst; 2000 Jun; 75(3):167-71. PubMed ID: 10984842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence in situ hybridization mapping of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences.
    Irigoyen ML; Linares C; Ferrer E; Fominaya A
    Genome; 2002 Dec; 45(6):1230-7. PubMed ID: 12502269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena).
    Jellen EN; Gill BS; Cox TS
    Genome; 1994 Aug; 37(4):613-8. PubMed ID: 18470105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum.
    Yan H; Ren Z; Deng D; Yang K; Yang C; Zhou P; Wight CP; Ren C; Peng Y
    PLoS One; 2021; 16(1):e0240703. PubMed ID: 33417607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal distribution patterns of the (AC)
    Fominaya A; Loarce Y; Montes A; Ferrer E
    Genome; 2017 Mar; 60(3):216-227. PubMed ID: 28156137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P; Ramírez MC; Ballesteros J; Cabrera A
    Hereditas; 2001; 135(2-3):171-4. PubMed ID: 12152330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena.
    Katsiotis A; Schmidt T; Heslop-Harrison JS
    Genome; 1996 Apr; 39(2):410-7. PubMed ID: 8984007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cytogenetic analysis of Aegilops cylindrica host.
    Linc G; Friebe BR; Kynast RG; Molnar-Lang M; Köszegi B; Sutka J; Gill BS
    Genome; 1999 Jun; 42(3):497-503. PubMed ID: 10382296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids.
    Tomaszewska P; Schwarzacher T; Heslop-Harrison JSP
    Front Plant Sci; 2022; 13():1026364. PubMed ID: 36483968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae).
    Yang Q; Hanson L; Bennett MD; Leitch IJ
    Genome; 1999 Jun; 42(3):512-8. PubMed ID: 10382298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of two novel retrotransposons of the Ty1-copia group in oat genomes.
    Linares C; Loarce Y; Serna A; Fominaya A
    Chromosoma; 2001 May; 110(2):115-23. PubMed ID: 11453554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.
    Luo X; Zhang H; Kang H; Fan X; Wang Y; Sha L; Zhou Y
    Genome; 2014 Sep; 57(9):469-72. PubMed ID: 25478818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct labelling of plant chromosomes by rapid in situ hybridization.
    Reader SM; Abbo S; Purdie KA; King IP; Miller TE
    Trends Genet; 1994 Aug; 10(8):265-6. PubMed ID: 7940753
    [No Abstract]   [Full Text] [Related]  

  • 16. Intergenomic translocations in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata).
    Bi K; Bogart JP; Fu J
    Cytogenet Genome Res; 2007; 116(4):289-97. PubMed ID: 17431327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated karyotyping of sorghum by in situ hybridization of landed BACs.
    Kim JS; Childs KL; Islam-Faridi MN; Menz MA; Klein RR; Klein PE; Price HJ; Mullet JE; Stelly DM
    Genome; 2002 Apr; 45(2):402-12. PubMed ID: 11962637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development and molecular cytogenetic identification of 1RS.1BL Translocation lines derived from Triticale x Tritileymus].
    Li XF; Liu SB; Song ZQ; Wang HG
    Yi Chuan; 2004 Jul; 26(4):481-5. PubMed ID: 15640045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic in situ hybridization in Avena sativa.
    Chen Q; Armstrong K
    Genome; 1994 Aug; 37(4):607-12. PubMed ID: 18470104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): evidence from hybridization and cytological studies.
    Tel-Zur N; Abbo S; Bar-Zvi D; Mizrahi Y
    Ann Bot; 2004 Oct; 94(4):527-34. PubMed ID: 15329334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.