These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 8033090)
1. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. McIlwrath AJ; Vasey PA; Ross GM; Brown R Cancer Res; 1994 Jul; 54(14):3718-22. PubMed ID: 8033090 [TBL] [Abstract][Full Text] [Related]
2. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. O'Connor PM; Jackman J; Jondle D; Bhatia K; Magrath I; Kohn KW Cancer Res; 1993 Oct; 53(20):4776-80. PubMed ID: 8402660 [TBL] [Abstract][Full Text] [Related]
3. Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Scott SL; Earle JD; Gumerlock PH Cancer Res; 2003 Nov; 63(21):7190-6. PubMed ID: 14612513 [TBL] [Abstract][Full Text] [Related]
4. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells. Nagasawa H; Li CY; Maki CG; Imrich AC; Little JB Cancer Res; 1995 May; 55(9):1842-6. PubMed ID: 7728750 [TBL] [Abstract][Full Text] [Related]
5. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Aldridge DR; Radford IR Cancer Res; 1998 Jul; 58(13):2817-24. PubMed ID: 9661896 [TBL] [Abstract][Full Text] [Related]
6. [Cell cycle regulation after exposure to ionizing radiation]. Teyssier F; Bay JO; Dionet C; Verrelle P Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340 [TBL] [Abstract][Full Text] [Related]
7. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Yount GL; Haas-Kogan DA; Vidair CA; Haas M; Dewey WC; Israel MA Cancer Res; 1996 Feb; 56(3):500-6. PubMed ID: 8564961 [TBL] [Abstract][Full Text] [Related]
8. Preferential radiosensitization in p53-mutated human tumour cell lines by pentoxifylline-mediated disruption of the G2/M checkpoint control. Strunz AM; Peschke P; Waldeck W; Ehemann V; Kissel M; Debus J Int J Radiat Biol; 2002 Aug; 78(8):721-32. PubMed ID: 12194756 [TBL] [Abstract][Full Text] [Related]
9. Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection. Nagasawa H; Keng P; Maki C; Yu Y; Little JB Cancer Res; 1998 May; 58(9):2036-41. PubMed ID: 9581850 [TBL] [Abstract][Full Text] [Related]
10. Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumour cells. Böhnke A; Westphal F; Schmidt A; El-Awady RA; Dahm-Daphi J Int J Radiat Biol; 2004 Jan; 80(1):53-63. PubMed ID: 14761850 [TBL] [Abstract][Full Text] [Related]
11. Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Bristow RG; Hu Q; Jang A; Chung S; Peacock J; Benchimol S; Hill R Oncogene; 1998 Apr; 16(14):1789-802. PubMed ID: 9583677 [TBL] [Abstract][Full Text] [Related]
12. Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Hagopian GS; Mills GB; Khokhar AR; Bast RC; Siddik ZH Clin Cancer Res; 1999 Mar; 5(3):655-63. PubMed ID: 10100719 [TBL] [Abstract][Full Text] [Related]
13. The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function. Liu XF; Xia YF; Li MZ; Wang HM; He YX; Zheng ML; Yang HL; Huang WL Cell Biol Int; 2006 Mar; 30(3):283-7. PubMed ID: 16448826 [TBL] [Abstract][Full Text] [Related]
14. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696 [TBL] [Abstract][Full Text] [Related]
15. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines. Concin N; Stimpfl M; Zeillinger C; Wolff U; Hefler L; Sedlak J; Leodolter S; Zeillinger R Int J Oncol; 2003 Jan; 22(1):51-7. PubMed ID: 12469184 [TBL] [Abstract][Full Text] [Related]
16. Wild-type p53 can induce p21 and apoptosis in neuroblastoma cells but the DNA damage-induced G1 checkpoint function is attenuated. McKenzie PP; Guichard SM; Middlemas DS; Ashmun RA; Danks MK; Harris LC Clin Cancer Res; 1999 Dec; 5(12):4199-207. PubMed ID: 10632361 [TBL] [Abstract][Full Text] [Related]
17. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations. Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049 [TBL] [Abstract][Full Text] [Related]
18. Effect of p53 overexpression on radiation sensitivity of human colon cancer cells. Zellars RC; Naida JD; Davis MA; Lawrence TS Radiat Oncol Investig; 1997; 5(2):43-9. PubMed ID: 9303056 [TBL] [Abstract][Full Text] [Related]
19. G2/M checkpoint is p53-dependent and independent after irradiation in five human sarcoma cell lines. Bache M; Dunst J; Würl P; Fröde D; Meye A; Schmidt H; Rath FW; Taubert H Anticancer Res; 1999; 19(3A):1827-32. PubMed ID: 10470122 [TBL] [Abstract][Full Text] [Related]
20. Wild-type p53 renders mouse astrocytes resistant to 1,3-Bis(2-chloroethyl)-1-nitrosourea despite the absence of a p53-dependent cell cycle arrest [corrected]. Nutt CL; Chambers AF; Cairncross JG Cancer Res; 1996 Jun; 56(12):2748-51. PubMed ID: 8665508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]