These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8033159)

  • 1. Magnetic resonance guided radiosurgery in children: tridimensional extrapolation from isodose neuroimaging superimposition.
    Benassi M; Begnozzi L; Carpino S; Valentino V
    Childs Nerv Syst; 1994 Mar; 10(2):115-21. PubMed ID: 8033159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A treatment planning system for stereotactic radiotherapy.
    Benassi M; Gentile FP; Begnozzi L; Chiatti L; Malaspina F; Carpino S
    Anticancer Res; 1995; 15(5B):2239-45. PubMed ID: 8572631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charged-particle radiosurgery for intracranial vascular malformations.
    Fabrikant JI; Levy RP; Steinberg GK; Phillips MH; Frankel KA; Lyman JT; Marks MP; Silverberg GD
    Neurosurg Clin N Am; 1992 Jan; 3(1):99-139. PubMed ID: 1633456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic stereotactic radiosurgery using a linear accelerator.
    Worthington C; Jenrette JM; Fenn JO; Frye GD; Wise JD; Starr CW; Nelson SJ; Schoer RC; Miller R; Curé J
    South Med J; 1991 Nov; 84(11):1327-33. PubMed ID: 1948217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple approach to the technical aspects of radiosurgery treatments.
    Prasad SC; Bassano DA; King GA; Winfield JA
    Med Dosim; 1993; 18(3):113-7. PubMed ID: 8280361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiosurgery using a modified linear accelerator.
    Alexander E; Loeffler JS
    Neurosurg Clin N Am; 1992 Jan; 3(1):167-90. PubMed ID: 1633445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans.
    Kubo HD; Wilder RB; Pappas CT
    Int J Radiat Oncol Biol Phys; 1999 Jul; 44(4):937-45. PubMed ID: 10386653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters.
    Levegrün S; Hof H; Essig M; Schlegel W; Debus J
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):796-808. PubMed ID: 15183483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of arc weights on the dose distribution for single target radiosurgery.
    Plazas MC; Lefkopoulos D; Schlienger M
    Med Phys; 1993; 20(5):1485-90. PubMed ID: 8289732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment.
    Shiu AS; Kooy HM; Ewton JR; Tung SS; Wong J; Antes K; Maor MH
    Int J Radiat Oncol Biol Phys; 1997 Feb; 37(3):679-88. PubMed ID: 9112467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensity-modulated radiosurgery for childhood arteriovenous malformations.
    Fuss M; Salter BJ; Caron JL; Vollmer DG; Herman TS
    Acta Neurochir (Wien); 2005 Nov; 147(11):1141-9; discussion 1149-50. PubMed ID: 16021387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dosimetric consequences of weighted fields using the same isocenter in radiosurgery.
    Larner JM; Berk HW; Agarwal SK; Steiner L
    Stereotact Funct Neurosurg; 1993; 61 Suppl 1():142-50. PubMed ID: 8115746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereotactic radiosurgery with linear accelerator.
    Calvo FA; Samblas J; Santos M; Delgado JM
    Rays; 1998; 23(3):462-85. PubMed ID: 9932466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stereotactic radiosurgery using a linear accelerator (LINAC): simulation and positioning].
    Takayama M; Nakamura M; Ikezaki H; Ikeda I; Kusuda J; Furuya Y; Hara M; Saito I
    No Shinkei Geka; 1995 Mar; 23(3):223-8. PubMed ID: 7700490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of arteriovenous malformations with stereotactic radiosurgery employing both magnetic resonance angiography and standard angiography as a database.
    Petereit D; Mehta M; Turski P; Levin A; Strother C; Mistretta C; Mackie R; Gehring M; Kubsad S; Kinsella T
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(2):309-13. PubMed ID: 8420879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Stereotactic convergent-beam irradiation: its current prospects based on clinical results].
    Engenhart R; Wowra B; Kimmig B; Höver KH; Kunze S; Wannenmacher M
    Strahlenther Onkol; 1992 May; 168(5):245-59. PubMed ID: 1598659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereotactic radiosurgery in pediatric patients.
    Weprin BE; Hall WA; Cho KH; Sperduto PW; Gerbi BJ; Moertel C
    Pediatr Neurol; 1996 Oct; 15(3):193-9. PubMed ID: 8916155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiological aspects of gamma knife radiosurgery for arteriovenous malformations and other non-tumoural disorders of the brain.
    Guo WY
    Acta Radiol Suppl; 1993; 388():1-34. PubMed ID: 8517190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged-particle radiosurgery of the brain.
    Levy RP; Fabrikant JI; Frankel KA; Phillips MH; Lyman JT
    Neurosurg Clin N Am; 1990 Oct; 1(4):955-90. PubMed ID: 2136179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target delineation in radiosurgery for cerebral arteriovenous malformations. Assessment of the value of stereotaxic MR imaging and MR angiography.
    Guo WY; Nordell B; Karlsson B; Söderman M; Lindqvist M; Ericson K; Franck A; Lax I; Lindquist C
    Acta Radiol; 1993 Sep; 34(5):457-63. PubMed ID: 8369181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.