These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 8033991)
1. A factor protecting mammalian [75Se]SeCys-tRNA is different from EF-1 alpha. Yamada K; Mizutani T; Ejiri S; Totsuka T FEBS Lett; 1994 Jun; 347(2-3):137-42. PubMed ID: 8033991 [TBL] [Abstract][Full Text] [Related]
2. A new translational elongation factor for selenocysteyl-tRNA in eucaryotes. Yamada K FEBS Lett; 1995 Dec; 377(3):313-7. PubMed ID: 8549745 [TBL] [Abstract][Full Text] [Related]
3. A G.U base pair in the eukaryotic selenocysteine tRNA is important for interaction with SePF, the putative selenocysteine-specific elongation factor. Mizutani T; Tanabe K; Yamada K FEBS Lett; 1998 Jun; 429(2):189-93. PubMed ID: 9650587 [TBL] [Abstract][Full Text] [Related]
4. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe. Miyazaki M; Uritani M; Fujimura K; Yamakatsu H; Kageyama T; Takahashi K J Biochem; 1988 Mar; 103(3):508-21. PubMed ID: 3214489 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB. Itoh Y; Sekine S; Yokoyama S Nucleic Acids Res; 2015 Oct; 43(18):9028-38. PubMed ID: 26304550 [TBL] [Abstract][Full Text] [Related]
6. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. Kromayer M; Wilting R; Tormay P; Böck A J Mol Biol; 1996 Oct; 262(4):413-20. PubMed ID: 8893853 [TBL] [Abstract][Full Text] [Related]
7. Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells. Motorin YA; Wolfson AD; Löhr D; Orlovsky AF; Gladilin KL Eur J Biochem; 1991 Oct; 201(2):325-31. PubMed ID: 1935929 [TBL] [Abstract][Full Text] [Related]
8. Study of mammalian selenocysteyl-tRNA synthesis with [75Se]HSe. Mizutani T; Kurata H; Yamada K FEBS Lett; 1991 Sep; 289(1):59-63. PubMed ID: 1894009 [TBL] [Abstract][Full Text] [Related]
9. Ribosome dynamics during decoding. Rodnina MV; Fischer N; Maracci C; Stark H Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1716):. PubMed ID: 28138068 [TBL] [Abstract][Full Text] [Related]
10. tRNA and the guanosinetriphosphatase activity of elongation factor Tu. Swart GW; Parmeggiani A Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860 [TBL] [Abstract][Full Text] [Related]
11. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Jonák J; Pokorná K; Meloun B; Karas K Eur J Biochem; 1986 Jan; 154(2):355-62. PubMed ID: 3510872 [TBL] [Abstract][Full Text] [Related]
12. Properties of the elongation factor 1 alpha in the thermoacidophilic archaebacterium Sulfolobus solfataricus. Masullo M; Raimo G; Parente A; Gambacorta A; De Rosa M; Bocchini V Eur J Biochem; 1991 Aug; 199(3):529-37. PubMed ID: 1907914 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs. Hunter SE; Spremulli LL RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748 [TBL] [Abstract][Full Text] [Related]
14. Interaction between elongation factors 1beta and 1gamma from Bombyx mori silk gland. Kamiie K; Yamashita T; Taira H; Kidou S; Ejiri S Biosci Biotechnol Biochem; 2003 Jul; 67(7):1522-9. PubMed ID: 12913296 [TBL] [Abstract][Full Text] [Related]
15. Trace 5-methylaminomethyl-2-selenouridine in bovine tRNA and the selenouridine synthase activity in bovine liver. Mizutani T; Watanabe T; Kanaya K; Nakagawa Y; Fujiwara T Mol Biol Rep; 1999 Aug; 26(3):167-72. PubMed ID: 10532311 [TBL] [Abstract][Full Text] [Related]
16. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu. Rudinger J; Hillenbrandt R; Sprinzl M; Giegé R EMBO J; 1996 Feb; 15(3):650-7. PubMed ID: 8599948 [TBL] [Abstract][Full Text] [Related]
17. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro. Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755 [TBL] [Abstract][Full Text] [Related]
18. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes. Bullard JM; Cai YC; Zhang Y; Spremulli LL Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic studies of the translational elongation cycle in mammalian mitochondria. Woriax VL; Bullard JM; Ma L; Yokogawa T; Spremulli LL Biochim Biophys Acta; 1997 May; 1352(1):91-101. PubMed ID: 9177487 [TBL] [Abstract][Full Text] [Related]
20. Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells. Marcinkiewicz C; Gajko A; Gałasiński W Acta Biochim Pol; 1991; 38(1):129-34. PubMed ID: 1796694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]