BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8033991)

  • 1. A factor protecting mammalian [75Se]SeCys-tRNA is different from EF-1 alpha.
    Yamada K; Mizutani T; Ejiri S; Totsuka T
    FEBS Lett; 1994 Jun; 347(2-3):137-42. PubMed ID: 8033991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new translational elongation factor for selenocysteyl-tRNA in eucaryotes.
    Yamada K
    FEBS Lett; 1995 Dec; 377(3):313-7. PubMed ID: 8549745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G.U base pair in the eukaryotic selenocysteine tRNA is important for interaction with SePF, the putative selenocysteine-specific elongation factor.
    Mizutani T; Tanabe K; Yamada K
    FEBS Lett; 1998 Jun; 429(2):189-93. PubMed ID: 9650587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe.
    Miyazaki M; Uritani M; Fujimura K; Yamakatsu H; Kageyama T; Takahashi K
    J Biochem; 1988 Mar; 103(3):508-21. PubMed ID: 3214489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB.
    Itoh Y; Sekine S; Yokoyama S
    Nucleic Acids Res; 2015 Oct; 43(18):9028-38. PubMed ID: 26304550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB.
    Kromayer M; Wilting R; Tormay P; Böck A
    J Mol Biol; 1996 Oct; 262(4):413-20. PubMed ID: 8893853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.).
    Yanagisawa T; Ishii R; Hikida Y; Fukunaga R; Sengoku T; Sekine S; Yokoyama S
    J Struct Funct Genomics; 2015 Mar; 16(1):25-41. PubMed ID: 25618148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells.
    Motorin YA; Wolfson AD; Löhr D; Orlovsky AF; Gladilin KL
    Eur J Biochem; 1991 Oct; 201(2):325-31. PubMed ID: 1935929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of mammalian selenocysteyl-tRNA synthesis with [75Se]HSe.
    Mizutani T; Kurata H; Yamada K
    FEBS Lett; 1991 Sep; 289(1):59-63. PubMed ID: 1894009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome dynamics during decoding.
    Rodnina MV; Fischer N; Maracci C; Stark H
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1716):. PubMed ID: 28138068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNA and the guanosinetriphosphatase activity of elongation factor Tu.
    Swart GW; Parmeggiani A
    Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA.
    Jonák J; Pokorná K; Meloun B; Karas K
    Eur J Biochem; 1986 Jan; 154(2):355-62. PubMed ID: 3510872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of the elongation factor 1 alpha in the thermoacidophilic archaebacterium Sulfolobus solfataricus.
    Masullo M; Raimo G; Parente A; Gambacorta A; De Rosa M; Bocchini V
    Eur J Biochem; 1991 Aug; 199(3):529-37. PubMed ID: 1907914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between elongation factors 1beta and 1gamma from Bombyx mori silk gland.
    Kamiie K; Yamashita T; Taira H; Kidou S; Ejiri S
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1522-9. PubMed ID: 12913296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace 5-methylaminomethyl-2-selenouridine in bovine tRNA and the selenouridine synthase activity in bovine liver.
    Mizutani T; Watanabe T; Kanaya K; Nakagawa Y; Fujiwara T
    Mol Biol Rep; 1999 Aug; 26(3):167-72. PubMed ID: 10532311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu.
    Rudinger J; Hillenbrandt R; Sprinzl M; Giegé R
    EMBO J; 1996 Feb; 15(3):650-7. PubMed ID: 8599948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro.
    Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D
    FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes.
    Bullard JM; Cai YC; Zhang Y; Spremulli LL
    Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies of the translational elongation cycle in mammalian mitochondria.
    Woriax VL; Bullard JM; Ma L; Yokogawa T; Spremulli LL
    Biochim Biophys Acta; 1997 May; 1352(1):91-101. PubMed ID: 9177487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.