These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 803460)

  • 21. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 22. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A; Mansurova SE; Tsydendambaev VD; Kulaev IS
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and perchlorate as detected by light-induced fluorochrome fluorescence changes and by photophosphorylation.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1972 Jul; 275(1):125-9. PubMed ID: 4340267
    [No Abstract]   [Full Text] [Related]  

  • 24. P430, a possible primary electron acceptor in Rhodospirillum rubrum.
    Silberstein BR; Gromet-Elhanan Z
    FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098
    [No Abstract]   [Full Text] [Related]  

  • 25. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation.
    Guber S; Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928
    [No Abstract]   [Full Text] [Related]  

  • 26. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum.
    Malkin S; Silberstein B
    Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084
    [No Abstract]   [Full Text] [Related]  

  • 27. Roles of ubiquinone-10 and rhodoquinone in photosynthetic formation of adenosine triphosphate by chromatophores from Rhodospirillum rubrum.
    Okayama S; Yamamoto N; Nishikawa K; Horio T
    J Biol Chem; 1968 Jun; 243(11):2995-9. PubMed ID: 5653187
    [No Abstract]   [Full Text] [Related]  

  • 28. The photoreduction of nicotinamide-adenine dinucleotide by chromatophore fractions from Rhodospirillum rubrum.
    Govindjee R; Sybesma C
    Biophys J; 1972 Jul; 12(7):897-908. PubMed ID: 4338746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 30. p-Phenylenediamines as electron donors for photosynthetic pyridine nucleotide reduction in chromatophores from Rhodospirillum rubrum.
    Trebst A; Pistorius E; Baltscheffsky H
    Biochim Biophys Acta; 1967 Jul; 143(1):257-60. PubMed ID: 4383018
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state.
    Leiser M; Gromet-Elhanan Z
    Arch Biochem Biophys; 1977 Jan; 178(1):79-88. PubMed ID: 402116
    [No Abstract]   [Full Text] [Related]  

  • 32. Electron acceptors in reaction center preparations from photosynthetic bacteria.
    Slooten L
    Biochim Biophys Acta; 1972 Aug; 275(2):208-18. PubMed ID: 4627844
    [No Abstract]   [Full Text] [Related]  

  • 33. Photooxidase activity of Rhodospirillum rubrum chromatophores and reaction center complexes. The role of non-cyclic electron transfer in generation of the membrane potential.
    Remennikov VG; Samuilov VD
    Biochim Biophys Acta; 1979 May; 546(2):220-35. PubMed ID: 109117
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z
    Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Naphxhylmercaptobenzoquinone, a new inhibitor of photophosphorylation in Rhodospirillum rubrum chromatophores at the level of ubiquinone.
    Gromet-Elhanan Z
    Biochem Biophys Res Commun; 1976 Nov; 73(1):13-8. PubMed ID: 826250
    [No Abstract]   [Full Text] [Related]  

  • 36. Fluorescence change of auramine O bound to chromatophores of Rhodospirillum rubrum--analysis in connection to ionic environment and ion transport.
    Kobayashi Y; Nishimura M
    J Biochem; 1972 Feb; 71(2):275-84. PubMed ID: 4622706
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores.
    Ravizzini RA; Lescano WI; Vallejos RH
    FEBS Lett; 1975 Oct; 58(1):285-8. PubMed ID: 131702
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on ion transport in cells of photosynthetic bacteria. II. Analysis of reversed hydrogen ion change.
    Kobayashi Y; Nishimura M
    J Biochem; 1973 Dec; 74(6):1227-32. PubMed ID: 4205459
    [No Abstract]   [Full Text] [Related]  

  • 39. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores.
    Vallejos RH; Lescano WI; Lucero HA
    Arch Biochem Biophys; 1978 Oct; 190(2):578-84. PubMed ID: 102254
    [No Abstract]   [Full Text] [Related]  

  • 40. Polarographic studies in presence of Triton X-100 on oxidation-reduction components bound with chromatophores from Rhodospirillum rubrum.
    Erabi T; Higuti T; Sakata K; Kakuno T; Yamashita J; Tanaka M; Horio T
    J Biochem; 1976 Mar; 79(3):497-503. PubMed ID: 181368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.