These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8034611)

  • 1. Rapid mRNA degradation in yeast can proceed independently of translational elongation.
    Sagliocco FA; Zhu D; Vega Laso MR; McCarthy JE; Tuite MF; Brown AJ
    J Biol Chem; 1994 Jul; 269(28):18630-7. PubMed ID: 8034611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of 5'-secondary structures upon ribosome binding to mRNA during translation in yeast.
    Sagliocco FA; Vega Laso MR; Zhu D; Tuite MF; McCarthy JE; Brown AJ
    J Biol Chem; 1993 Dec; 268(35):26522-30. PubMed ID: 8253781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation of translation can occur only in a restricted region of the CYC1 mRNA of Saccharomyces cerevisiae.
    Yun DF; Sherman F
    Mol Cell Biol; 1995 Feb; 15(2):1021-33. PubMed ID: 7823918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of leader primary structure on the translational efficiency of phosphoglycerate kinase mRNA in yeast.
    van den Heuvel JJ; Planta RJ; Raué HA
    Yeast; 1990; 6(6):473-82. PubMed ID: 2080664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover mechanisms of the stable yeast PGK1 mRNA.
    Muhlrad D; Decker CJ; Parker R
    Mol Cell Biol; 1995 Apr; 15(4):2145-56. PubMed ID: 7891709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader.
    Vega Laso MR; Zhu D; Sagliocco F; Brown AJ; Tuite MF; McCarthy JE
    J Biol Chem; 1993 Mar; 268(9):6453-62. PubMed ID: 8454618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of CYC1 mRNA in the yeast Saccharomyces cerevisiae does not require translation.
    Yun DF; Sherman F
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8895-900. PubMed ID: 8799124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA.
    Beelman CA; Parker R
    J Biol Chem; 1994 Apr; 269(13):9687-92. PubMed ID: 8144558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c.
    Baim SB; Pietras DF; Eustice DC; Sherman F
    Mol Cell Biol; 1985 Aug; 5(8):1839-46. PubMed ID: 3018530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae.
    Baim SB; Sherman F
    Mol Cell Biol; 1988 Apr; 8(4):1591-601. PubMed ID: 2837649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid-responsive control of mRNA stability. Unsaturated fatty acid-induced degradation of the Saccharomyces OLE1 transcript.
    Gonzalez CI; Martin CE
    J Biol Chem; 1996 Oct; 271(42):25801-9. PubMed ID: 8824209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of translational initiation in Saccharomyces cerevisiae by secondary structure: the roles of the stability and position of stem-loops in the mRNA leader.
    Oliveira CC; van den Heuvel JJ; McCarthy JE
    Mol Microbiol; 1993 Aug; 9(3):521-32. PubMed ID: 8412699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae.
    Oliveira CC; McCarthy JE
    J Biol Chem; 1995 Apr; 270(15):8936-43. PubMed ID: 7721802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover.
    Hagan KW; Ruiz-Echevarria MJ; Quan Y; Peltz SW
    Mol Cell Biol; 1995 Feb; 15(2):809-23. PubMed ID: 7823948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutationally altered 3' ends of yeast CYC1 mRNA affect transcript stability and translational efficiency.
    Zaret KS; Sherman F
    J Mol Biol; 1984 Jul; 177(1):107-35. PubMed ID: 6086937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct cis-acting signals enhance 3' endpoint formation of CYC1 mRNA in the yeast Saccharomyces cerevisiae.
    Russo P; Li WZ; Hampsey DM; Zaret KS; Sherman F
    EMBO J; 1991 Mar; 10(3):563-71. PubMed ID: 1848175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundant 3' end-forming signals for the yeast CYC1 mRNA.
    Guo Z; Russo P; Yun DF; Butler JS; Sherman F
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4211-4. PubMed ID: 7753784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay.
    Ruiz-Echevarria MJ; Peltz SW
    EMBO J; 1996 Jun; 15(11):2810-9. PubMed ID: 8654378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae.
    Herrick D; Parker R; Jacobson A
    Mol Cell Biol; 1990 May; 10(5):2269-84. PubMed ID: 2183028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.