These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 8035344)
1. Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. Atack JR; Prior AM; Fletcher SR; Quirk K; McKernan R; Ragan CI J Pharmacol Exp Ther; 1994 Jul; 270(1):70-6. PubMed ID: 8035344 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the effects of lithium on phosphatidylinositol (PI) cycle activity in human muscarinic m1 receptor-transfected CHO cells. Atack JR; Prior AM; Griffith D; Ragan CI Br J Pharmacol; 1993 Oct; 110(2):809-15. PubMed ID: 8242255 [TBL] [Abstract][Full Text] [Related]
3. Disruption by lithium of phosphatidylinositol-4,5-bisphosphate supply and inositol-1,4,5-trisphosphate generation in Chinese hamster ovary cells expressing human recombinant m1 muscarinic receptors. Jenkinson S; Nahorski SR; Challiss RA Mol Pharmacol; 1994 Dec; 46(6):1138-48. PubMed ID: 7808434 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of lithium on muscarinic cholinoceptor-stimulated CMP-phosphatidate accumulation in cerebellar granule cells, CHO-M3 cells, and SH-SY5Y neuroblastoma cells. Gray DW; Challiss RA; Nahorski SR J Neurochem; 1994 Oct; 63(4):1354-60. PubMed ID: 7931286 [TBL] [Abstract][Full Text] [Related]
5. Epi-inositol is biochemically active in reversing lithium effects on cytidine monophosphorylphosphatidate (CMP-PA). Short communication. Richards MH; Belmaker RH J Neural Transm (Vienna); 1996; 103(11):1281-5. PubMed ID: 9013414 [TBL] [Abstract][Full Text] [Related]
6. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum. Jenkinson S; Patel N; Nahorski SR; Challiss RA J Neurochem; 1993 Sep; 61(3):1082-90. PubMed ID: 8395558 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. Atack JR; Cook SM; Watt AP; Fletcher SR; Ragan CI J Neurochem; 1993 Feb; 60(2):652-8. PubMed ID: 8380439 [TBL] [Abstract][Full Text] [Related]
8. Visualization of agonist-stimulated inositol phospholipid turnover in individual neurons of the rat cerebral cortex and hippocampus. Bevilacqua JA; Downes CP; Lowenstein PR Neuroscience; 1994 Jun; 60(4):945-58. PubMed ID: 7936213 [TBL] [Abstract][Full Text] [Related]
9. Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. Watson DG; Watterson JM; Lenox RH J Pharmacol Exp Ther; 1998 Apr; 285(1):307-16. PubMed ID: 9536026 [TBL] [Abstract][Full Text] [Related]
10. Noradrenaline stimulation unbalances the phosphoinositide cycle in rat cerebral cortical slices. Claro E; Fain JN; Picatoste F J Neurochem; 1993 Jun; 60(6):2078-86. PubMed ID: 8388033 [TBL] [Abstract][Full Text] [Related]
11. Relative contribution of phosphoinositides and phosphatidylcholine hydrolysis to the actions of carbamylcholine, thyrotropin (TSH), and phorbol esters on dog thyroid slices: regulation of cytidine monophosphate-phosphatidic acid accumulation and phospholipase-D activity. I. Actions of carbamylcholine, calcium ionophores, and TSH. Lejeune C; Mockel J; Dumont JE Endocrinology; 1994 Dec; 135(6):2488-96. PubMed ID: 7988436 [TBL] [Abstract][Full Text] [Related]
12. Radio-label and mass determinations of inositol 1,3,4,5-tetrakisphosphate formation in rat cerebral cortical slices: differential effects of myo-inositol. Kurian P; Narang N; Chandler LJ; Crews FT Neurochem Res; 1993 May; 18(5):639-45. PubMed ID: 8474581 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of lithium on muscarinic receptor stimulation of inositol phosphates in rat cerebral cortex slices. Batty I; Nahorski SR J Neurochem; 1985 Nov; 45(5):1514-21. PubMed ID: 4045461 [TBL] [Abstract][Full Text] [Related]
14. Modulation of NMDA effects on agonist-stimulated phosphoinositide turnover by memantine in neonatal rat cerebral cortex. Mistry R; Wilke R; Challiss RA Br J Pharmacol; 1995 Feb; 114(4):797-804. PubMed ID: 7773540 [TBL] [Abstract][Full Text] [Related]
15. Modulation of carbachol-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. Jope RS; Casebolt TL; Johnson GV Neurochem Res; 1987 Aug; 12(8):693-700. PubMed ID: 2819754 [TBL] [Abstract][Full Text] [Related]
16. Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. Kennedy ED; Challiss RA; Nahorski SR J Neurochem; 1989 Nov; 53(5):1652-5. PubMed ID: 2795023 [TBL] [Abstract][Full Text] [Related]
17. Beryllium competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does not enhance agonist-induced inositol phosphate accumulation. Faraci WS; Zorn SH; Bakker AV; Jackson E; Pratt K Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):369-74. PubMed ID: 8387266 [TBL] [Abstract][Full Text] [Related]
18. Lithium inhibits muscarinic-receptor-stimulated inositol tetrakisphosphate accumulation in rat cerebral cortex. Batty I; Nahorski SR Biochem J; 1987 Nov; 247(3):797-800. PubMed ID: 3426564 [TBL] [Abstract][Full Text] [Related]
19. Lithium enhances accumulation of [3H]inositol radioactivity and mass of second messenger inositol 1,4,5-trisphosphate in monkey cerebral cortex slices. Dixon JF; Lee CH; Los GV; Hokin LE J Neurochem; 1992 Dec; 59(6):2332-5. PubMed ID: 1431911 [TBL] [Abstract][Full Text] [Related]
20. Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig. Lee CH; Dixon JF; Reichman M; Moummi C; Los G; Hokin LE Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):377-85. PubMed ID: 1546953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]