These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8035779)

  • 1. Myofibrillar adaptations during cardiac hypertrophy.
    Toffolo RL; Ianuzzo CD
    Mol Cell Biochem; 1994 Feb; 131(2):141-9. PubMed ID: 8035779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional myosin heavy chain expression in volume and pressure overload induced cardiac hypertrophy.
    Dool JS; Mak AS; Friberg P; Wahlander H; Hawrylechko A; Adams MA
    Acta Physiol Scand; 1995 Dec; 155(4):396-404. PubMed ID: 8719259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional variations in ex-vivo diffusion tensor anisotropy are associated with cardiomyocyte remodeling in rats after left ventricular pressure overload.
    Carruth ED; Teh I; Schneider JE; McCulloch AD; Omens JH; Frank LR
    J Cardiovasc Magn Reson; 2020 Apr; 22(1):21. PubMed ID: 32241289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac contractile proteins in hypertrophied and failing guinea pig heart.
    Malhotra A; Siri FM; Aronson R
    Cardiovasc Res; 1992 Feb; 26(2):153-61. PubMed ID: 1533346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat.
    Bugaisky LB; Anderson PG; Hall RS; Bishop SP
    Circ Res; 1990 Apr; 66(4):1127-32. PubMed ID: 2138524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary vascular morphology in pressure-overload left ventricular hypertrophy.
    Bishop SP; Powell PC; Hasebe N; Shen YT; Patrick TA; Hittinger L; Vatner SF
    J Mol Cell Cardiol; 1996 Jan; 28(1):141-54. PubMed ID: 8745222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Left ventricular regional variations in myosin isoform shift in Dahl salt-sensitive hypertensive rats.
    Sakurai S; Ashida T; Ieki K; Takahashi N; Fujii J
    Hypertens Res; 2003 Mar; 26(3):251-5. PubMed ID: 12675281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice.
    Dorn GW; Robbins J; Ball N; Walsh RA
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H400-5. PubMed ID: 8048605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofibrillar protein turnover in cardiac hypertrophy due to aortic regurgitation.
    Magid NM; Wallerson DC; Borer JS
    Cardiology; 1993; 82(1):20-9. PubMed ID: 8519006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypertrophy on regional action potential characteristics in the rat left ventricle: a cellular basis for T-wave inversion?
    Shipsey SJ; Bryant SM; Hart G
    Circulation; 1997 Sep; 96(6):2061-8. PubMed ID: 9323099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2-deoxyglucose uptake. A 31P NMR spectroscopic study.
    Zhang J; Duncker DJ; Ya X; Zhang Y; Pavek T; Wei H; Merkle H; Uğurbil K; From AH; Bache RJ
    Circulation; 1995 Sep; 92(5):1274-83. PubMed ID: 7648676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course adaptations in rat skeletal muscle isomyosins during compensatory growth and regression.
    Tsika RW; Herrick RE; Baldwin KM
    J Appl Physiol (1985); 1987 Nov; 63(5):2111-21. PubMed ID: 2961724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress impairs myocyte autophagy, resulting in myocyte hypertrophy.
    Wang JP; Chi RF; Wang K; Ma T; Guo XF; Zhang XL; Li B; Qin FZ; Han XB; Fan BA
    Exp Physiol; 2018 Apr; 103(4):461-472. PubMed ID: 29327381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: I. Regional hemodynamics and myocyte remodeling.
    Wang X; Li F; Gerdes AM
    J Mol Cell Cardiol; 1999 Feb; 31(2):307-17. PubMed ID: 10093044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cardiac renin-angiotensin system in the development of pressure-overload left ventricular hypertrophy in rats with abdominal aortic constriction.
    Reddy DS; Singh M; Ghosh S; Ganguly NK
    Mol Cell Biochem; 1996 Feb; 155(1):1-11. PubMed ID: 8717433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction by oral propranolol treatment of left ventricular hypertrophy secondary to pressure-overload in the rat.
    Ostman-Smith I
    Br J Pharmacol; 1995 Nov; 116(6):2703-9. PubMed ID: 8590993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium.
    Mercadier JJ; Bouveret P; Gorza L; Schiaffino S; Clark WA; Zak R; Swynghedauw B; Schwartz K
    Circ Res; 1983 Jul; 53(1):52-62. PubMed ID: 6222846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Losartan inhibits myosin isoform shift after myocardial infarction in rats.
    Zhang ML; Elkassem S; Davidoff AW; Saito K; ter Keurs HE
    Mol Cell Biochem; 2003 Sep; 251(1-2):111-7. PubMed ID: 14575312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of L-type Ca2+ current characteristics in endo- and epicardial myocytes from rat left ventricle with pressure-induced hypertrophy.
    Volk T; Ehmke H
    Pflugers Arch; 2002 Jan; 443(3):399-404. PubMed ID: 11810209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis.
    Weinberg EO; Schoen FJ; George D; Kagaya Y; Douglas PS; Litwin SE; Schunkert H; Benedict CR; Lorell BH
    Circulation; 1994 Sep; 90(3):1410-22. PubMed ID: 8087951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.