BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 8036249)

  • 1. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics.
    Holstein-Rathlou NH; Marsh DJ
    Physiol Rev; 1994 Jul; 74(3):637-81. PubMed ID: 8036249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic aspects of the tubuloglomerular feedback mechanism.
    Holstein-Rathlou NH
    Dan Med Bull; 1992 Apr; 39(2):134-54. PubMed ID: 1611920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaos and non-linear phenomena in renal vascular control.
    Yip KP; Holstein-Rathlou NH
    Cardiovasc Res; 1996 Mar; 31(3):359-70. PubMed ID: 8681323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling-induced complexity in nephron models of renal blood flow regulation.
    Laugesen JL; Sosnovtseva OV; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R997-R1006. PubMed ID: 20147606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation.
    Feldberg R; Colding-Jørgensen M; Holstein-Rathlou NH
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F581-93. PubMed ID: 7485545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillations and chaos in renal blood flow control.
    Holstein-Rathlou NH
    J Am Soc Nephrol; 1993 Dec; 4(6):1275-87. PubMed ID: 8130354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation.
    Walker M; Harrison-Bernard LM; Cook AK; Navar LG
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F858-65. PubMed ID: 11053046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of TGF-initiated nephron-nephron interactions in normotensive rats and SHR.
    Yip KP; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F980-8. PubMed ID: 1621821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats.
    Holstein-Rathlou NH; Wagner AJ; Marsh DJ
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F53-68. PubMed ID: 1992780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending myogenic autoregulation: interactions between tubuloglomerular feedback and myogenic mechanisms.
    Moore LC; Rich A; Casellas D
    Bull Math Biol; 1994 May; 56(3):391-410. PubMed ID: 8087076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic model of the tubuloglomerular feedback mechanism.
    Holstein-Rathlou NH; Marsh DJ
    Am J Physiol; 1990 May; 258(5 Pt 2):F1448-59. PubMed ID: 2337158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Yip KP; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1545-55. PubMed ID: 17728377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of TGF-dependent and myogenic oscillations in tubular pressure.
    Chon KH; Raghavan R; Chen YM; Marsh DJ; Yip KP
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F298-307. PubMed ID: 15479856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubuloglomerular Feedback Synchronization in Nephrovascular Networks.
    Zehra T; Cupples WA; Braam B
    J Am Soc Nephrol; 2021 Jun; 32(6):1293-1304. PubMed ID: 33833078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis.
    Chon KH; Chen YM; Marmarelis VZ; Marsh DJ; Holstein-Rathlou NH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F160-73. PubMed ID: 8048557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of a macula densa feedback mechanism as a mediator of renal autoregulation.
    Navar LG; Bell PD; Burke TJ
    Kidney Int Suppl; 1982 Aug; 12():S157-64. PubMed ID: 6957671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter estimation of feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive and Sprague-Dawley rats.
    Ditlevsen S; Yip KP; Marsh DJ; Holstein-Rathlou NH
    Am J Physiol Renal Physiol; 2007 Feb; 292(2):F607-16. PubMed ID: 17018842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal autoregulation: perspectives from whole kidney and single nephron studies.
    Navar LG
    Am J Physiol; 1978 May; 234(5):F357-70. PubMed ID: 347950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of TGF-proximal tubule interactions in renal autoregulation.
    Cupples WA; Wexler AS; Marsh DJ
    Am J Physiol; 1990 Oct; 259(4 Pt 2):F715-26. PubMed ID: 2221107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.